Skip to content
Snippets Groups Projects
Commit d4959f06 authored by Dominic Kempf's avatar Dominic Kempf
Browse files

Put both rank and pid into csv file

parent 9e173603
No related branches found
No related tags found
No related merge requests found
......@@ -8,19 +8,19 @@ import re
def join_csv_files():
with open('timings.csv', 'w') as out:
for f in os.listdir(os.getcwd()):
match = re.match(".*pid-([0-9]*).csv", f)
match = re.match(".*rank-([0-9]*).*", f)
if match:
for line in open(f, 'r'):
out.write("{} {}".format(match.group(1), line))
def calculate_floprate():
frame = pandas.read_csv('timings.csv', header=None, names=('pid', 'ident', 'kernel', 'what', 'value'), delimiter=' ')
frame = pandas.read_csv('timings.csv', header=None, names=('rank', 'ident', 'kernel', 'what', 'value'), delimiter=' ')
time = frame[frame.what == "time"]
ops = frame[frame.what != "time"]
time = time.groupby(('pid', 'ident', 'kernel'))['value'].min().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max()
ops = ops.groupby(('pid', 'ident', 'kernel'))['value'].max().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max()
time = time.groupby(('rank', 'ident', 'kernel'))['value'].min().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max()
ops = ops.groupby(('rank', 'ident', 'kernel'))['value'].max().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max()
with open('floprates.csv', 'w') as out:
for key in time.keys():
......@@ -30,12 +30,12 @@ def calculate_floprate():
def calculate_doftimes():
frame = pandas.read_csv('timings.csv', header=None, names=('pid', 'ident', 'kernel', 'what', 'value'), delimiter=' ')
frame = pandas.read_csv('timings.csv', header=None, names=('rank', 'ident', 'kernel', 'what', 'value'), delimiter=' ')
dofs = frame[frame.what == "dofs"]
time = frame[frame.what == "time"]
dofs = dofs.groupby(('pid', 'ident', 'kernel'))['value'].max().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max()
time = time.groupby(('pid', 'ident', 'kernel'))['value'].min().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max()
dofs = dofs.groupby(('rank', 'ident', 'kernel'))['value'].max().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max()
time = time.groupby(('rank', 'ident', 'kernel'))['value'].min().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max()
with open('doftimes.csv', 'w') as out:
for key in time.keys():
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment