Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-codegen
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
Christian Heinigk
dune-codegen
Commits
d9eee811
Commit
d9eee811
authored
6 years ago
by
Marcel Koch
Browse files
Options
Downloads
Patches
Plain Diff
copy loopy computation of matrix inverse to tensors.py
parent
0a07cf37
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
python/dune/codegen/pdelab/tensors.py
+134
-12
134 additions, 12 deletions
python/dune/codegen/pdelab/tensors.py
with
134 additions
and
12 deletions
python/dune/codegen/pdelab/tensors.py
+
134
−
12
View file @
d9eee811
...
...
@@ -8,12 +8,140 @@ from dune.codegen.generation import (get_counted_variable,
temporary_variable
,
)
from
loopy.match
import
Writes
import
pymbolic.primitives
as
prim
import
numpy
as
np
import
loopy
as
lp
import
itertools
as
it
def
define_determinant
(
name
,
matrix
,
shape
,
visitor
):
temporary_variable
(
name
)
assert
len
(
shape
)
==
2
and
shape
[
0
]
==
shape
[
1
]
dim
=
shape
[
0
]
matrix_entry
=
[[
prim
.
Subscript
(
prim
.
Variable
(
matrix
),
(
i
,
j
))
for
j
in
range
(
dim
)]
for
i
in
range
(
dim
)]
if
dim
==
2
:
expr_determinant
=
prim
.
Sum
((
prim
.
Product
((
matrix_entry
[
0
][
0
],
matrix_entry
[
1
][
1
])),
-
1
*
prim
.
Product
((
matrix_entry
[
1
][
0
],
matrix_entry
[
0
][
1
]))))
elif
dim
==
3
:
expr_determinant
=
prim
.
Sum
((
prim
.
Product
((
matrix_entry
[
0
][
0
],
matrix_entry
[
1
][
1
],
matrix_entry
[
2
][
2
])),
prim
.
Product
((
matrix_entry
[
0
][
1
],
matrix_entry
[
1
][
2
],
matrix_entry
[
2
][
0
])),
prim
.
Product
((
matrix_entry
[
0
][
2
],
matrix_entry
[
1
][
0
],
matrix_entry
[
2
][
1
])),
-
1
*
prim
.
Product
((
matrix_entry
[
0
][
2
],
matrix_entry
[
1
][
1
],
matrix_entry
[
2
][
0
])),
-
1
*
prim
.
Product
((
matrix_entry
[
0
][
0
],
matrix_entry
[
1
][
2
],
matrix_entry
[
2
][
1
])),
-
1
*
prim
.
Product
((
matrix_entry
[
0
][
1
],
matrix_entry
[
1
][
0
],
matrix_entry
[
2
][
2
]))
))
else
:
raise
NotImplementedError
()
instruction
(
expression
=
expr_determinant
,
assignee
=
prim
.
Variable
(
name
),
within_inames
=
frozenset
(
visitor
.
quadrature_inames
()),
depends_on
=
frozenset
({
Writes
(
matrix
)})
)
def
define_determinant_inverse
(
name
,
matrix
,
shape
,
visitor
):
det
=
name_determinant
(
matrix
,
shape
,
visitor
)
temporary_variable
(
name
)
instruction
(
expression
=
prim
.
Quotient
(
1
,
prim
.
Variable
(
det
)),
assignee
=
prim
.
Variable
(
name
),
within_inames
=
frozenset
(
visitor
.
quadrature_inames
()),
depends_on
=
frozenset
({
Writes
(
matrix
)})
)
def
define_matrix_inverse
(
name
,
name_inv
,
shape
,
visitor
):
temporary_variable
(
name_inv
,
shape
=
shape
,
managed
=
True
)
det_inv
=
name_determinant_inverse
(
name
,
shape
,
visitor
)
assert
len
(
shape
)
==
2
and
shape
[
0
]
==
shape
[
1
]
dim
=
shape
[
0
]
matrix_entry
=
[[
prim
.
Subscript
(
prim
.
Variable
(
name
),
(
i
,
j
))
for
j
in
range
(
dim
)]
for
i
in
range
(
dim
)]
assignee
=
[[
prim
.
Subscript
(
prim
.
Variable
(
name_inv
),
(
i
,
j
))
for
j
in
range
(
dim
)]
for
i
in
range
(
dim
)]
exprs
=
[[
None
for
_
in
range
(
dim
)]
for
_
in
range
(
dim
)]
if
dim
==
2
:
for
i
in
range
(
2
):
for
j
in
range
(
2
):
sign
=
1.
if
i
==
j
else
-
1.
exprs
[
i
][
j
]
=
prim
.
Product
((
sign
,
prim
.
Variable
(
det_inv
),
matrix_entry
[
1
-
i
][
1
-
j
]))
elif
dim
==
3
:
exprs
[
0
][
0
]
=
prim
.
Product
((
1.
,
prim
.
Variable
(
det_inv
),
prim
.
Sum
((
prim
.
Product
((
matrix_entry
[
1
][
1
],
matrix_entry
[
2
][
2
])),
-
1
*
prim
.
Product
((
matrix_entry
[
1
][
2
],
matrix_entry
[
2
][
1
]))))))
exprs
[
1
][
0
]
=
prim
.
Product
((
-
1.
,
prim
.
Variable
(
det_inv
),
prim
.
Sum
((
prim
.
Product
((
matrix_entry
[
0
][
1
],
matrix_entry
[
2
][
2
])),
-
1
*
prim
.
Product
((
matrix_entry
[
0
][
2
],
matrix_entry
[
2
][
1
]))))))
exprs
[
2
][
0
]
=
prim
.
Product
((
1.
,
prim
.
Variable
(
det_inv
),
prim
.
Sum
((
prim
.
Product
((
matrix_entry
[
0
][
1
],
matrix_entry
[
1
][
2
])),
-
1
*
prim
.
Product
((
matrix_entry
[
0
][
2
],
matrix_entry
[
1
][
1
]))))))
exprs
[
0
][
1
]
=
prim
.
Product
((
-
1.
,
prim
.
Variable
(
det_inv
),
prim
.
Sum
((
prim
.
Product
((
matrix_entry
[
1
][
0
],
matrix_entry
[
2
][
2
])),
-
1
*
prim
.
Product
((
matrix_entry
[
1
][
2
],
matrix_entry
[
2
][
0
]))))))
exprs
[
1
][
1
]
=
prim
.
Product
((
1.
,
prim
.
Variable
(
det_inv
),
prim
.
Sum
((
prim
.
Product
((
matrix_entry
[
0
][
0
],
matrix_entry
[
2
][
2
])),
-
1
*
prim
.
Product
((
matrix_entry
[
0
][
2
],
matrix_entry
[
2
][
0
]))))))
exprs
[
2
][
1
]
=
prim
.
Product
((
-
1.
,
prim
.
Variable
(
det_inv
),
prim
.
Sum
((
prim
.
Product
((
matrix_entry
[
0
][
0
],
matrix_entry
[
1
][
2
])),
-
1
*
prim
.
Product
((
matrix_entry
[
0
][
2
],
matrix_entry
[
1
][
0
]))))))
exprs
[
0
][
2
]
=
prim
.
Product
((
1.
,
prim
.
Variable
(
det_inv
),
prim
.
Sum
((
prim
.
Product
((
matrix_entry
[
1
][
0
],
matrix_entry
[
2
][
1
])),
-
1
*
prim
.
Product
((
matrix_entry
[
1
][
1
],
matrix_entry
[
2
][
0
]))))))
exprs
[
1
][
2
]
=
prim
.
Product
((
-
1.
,
prim
.
Variable
(
det_inv
),
prim
.
Sum
((
prim
.
Product
((
matrix_entry
[
0
][
0
],
matrix_entry
[
2
][
1
])),
-
1
*
prim
.
Product
((
matrix_entry
[
0
][
1
],
matrix_entry
[
2
][
0
]))))))
exprs
[
2
][
2
]
=
prim
.
Product
((
1.
,
prim
.
Variable
(
det_inv
),
prim
.
Sum
((
prim
.
Product
((
matrix_entry
[
0
][
0
],
matrix_entry
[
1
][
1
])),
-
1
*
prim
.
Product
((
matrix_entry
[
0
][
1
],
matrix_entry
[
1
][
0
]))))))
else
:
raise
NotImplementedError
for
j
in
range
(
dim
):
for
i
in
range
(
dim
):
instruction
(
expression
=
exprs
[
i
][
j
],
assignee
=
assignee
[
i
][
j
],
within_inames
=
frozenset
(
visitor
.
quadrature_inames
()),
depends_on
=
frozenset
({
Writes
(
name
)}))
def
name_determinant
(
matrix
,
shape
,
visitor
):
name
=
matrix
+
"
_det
"
define_determinant
(
name
,
matrix
,
shape
,
visitor
)
return
name
def
name_determinant_inverse
(
matrix
,
shape
,
visitor
):
name
=
matrix
+
"
_det_inv
"
define_determinant_inverse
(
name
,
matrix
,
shape
,
visitor
)
return
name
def
name_matrix_inverse
(
name
,
shape
,
visitor
):
name_inv
=
name
+
"
_inv
"
define_matrix_inverse
(
name
,
name_inv
,
shape
,
visitor
)
return
name_inv
def
matrix_inverse
(
name
,
shape
,
visitor
):
name_inv
=
name_matrix_inverse
(
name
,
shape
,
visitor
)
return
prim
.
Variable
(
name_inv
)
def
define_assembled_tensor
(
name
,
expr
,
visitor
):
temporary_variable
(
name
,
shape
=
expr
.
ufl_shape
,
...
...
@@ -22,7 +150,7 @@ def define_assembled_tensor(name, expr, visitor):
visitor
.
indices
=
indices
instruction
(
assignee
=
prim
.
Subscript
(
prim
.
Variable
(
name
),
indices
),
expression
=
visitor
.
call
(
expr
),
forced_iname_deps
=
frozenset
(
visitor
.
interface
.
quadrature_inames
()),
forced_iname_deps
=
frozenset
(
visitor
.
quadrature_inames
()),
depends_on
=
frozenset
({
lp
.
match
.
Tagged
(
"
sumfact_stage1
"
)}),
tags
=
frozenset
({
"
quad
"
}),
)
...
...
@@ -37,17 +165,11 @@ def name_assembled_tensor(o, visitor):
@kernel_cached
def
pymbolic_matrix_inverse
(
o
,
visitor
):
expr
=
o
.
ufl_operands
[
0
]
indices
=
visitor
.
indices
visitor
.
indices
=
None
name
=
name_assembled_tensor
(
o
.
ufl_operands
[
0
],
visitor
)
instruction
(
code
=
"
{}.invert();
"
.
format
(
name
),
within_inames
=
frozenset
(
visitor
.
interface
.
quadrature_inames
()),
depends_on
=
frozenset
({
lp
.
match
.
Writes
(
name
),
lp
.
match
.
Tagged
(
"
sumfact_stage1
"
),
}),
tags
=
frozenset
({
"
quad
"
}),
)
name
=
name_assembled_tensor
(
expr
,
visitor
)
visitor
.
indices
=
indices
return
prim
.
Variable
(
name
)
return
matrix_inverse
(
name
,
expr
.
ufl_shape
,
visitor
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment