Newer
Older
from dune.perftool.generation import (base_class,
class_basename,
class_member,
constructor_parameter,
include_file,
initializer_list,
symbol,
template_parameter,
)
from dune.perftool.cgen.clazz import (AccessModifier,
BaseClass,
ClassMember,
)
from dune.perftool import Restriction
@template_parameter("operator")
def lop_template_ansatz_gfs():
return "GFSU"
@template_parameter("operator")
def lop_template_test_gfs():
return "GFSV"
def lop_template_gfs(ma):
from ufl.classes import Argument, Coefficient
if isinstance(ma.argexpr, Argument):
if ma.argexpr.number() == 0:
return lop_template_test_gfs()
if ma.argexpr.number() == 1:
return lop_template_ansatz_gfs()
if isinstance(ma.argexpr, Coefficient):
assert ma.argexpr.count() == 0
return lop_template_ansatz_gfs()
assert False
@symbol
def name_initree_constructor_param():
return "iniParams"
@class_member("operator")
def define_initree(name):
param_name = name_initree_constructor_param()
include_file('dune/common/parametertree.hh', filetag="operatorfile")
constructor_parameter("const Dune::ParameterTree&", param_name, classtag="operator")
initializer_list(name, [param_name], classtag="operator")
return "const Dune::ParameterTree& {};".format(name)
def ufl_measure_to_pdelab_measure(which):
return {'cell': 'Volume',
'exterior_facet': 'Boundary',
'interior_facet': 'Skeleton',
}.get(which)
@class_member(classtag="operator", access=AccessModifier.PUBLIC)
return "enum {{ doPattern{} = true }};".format(which)
def enum_pattern():
from dune.perftool.generation import get_global_context_value
integral_type = get_global_context_value("integral_type")
return _enum_pattern(ufl_measure_to_pdelab_measure(integral_type))
def _pattern_baseclass(measure):
return base_class('Dune::PDELab::Full{}Pattern'.format(measure), classtag="operator")
def pattern_baseclass():
from dune.perftool.generation import get_global_context_value
integral_type = get_global_context_value("integral_type")
return _pattern_baseclass(ufl_measure_to_pdelab_measure(integral_type))
@class_member(classtag="operator", access=AccessModifier.PUBLIC)
return "enum {{ doAlpha{} = true }};".format(which)
def enum_alpha():
from dune.perftool.generation import get_global_context_value
integral_type = get_global_context_value("integral_type")
return _enum_alpha(ufl_measure_to_pdelab_measure(integral_type))
@class_basename("operator")
def localoperator_basename():
def class_type_from_cache(classtag):
from dune.perftool.generation import retrieve_cache_items
# get the basename
basename = [i for i in retrieve_cache_items(condition="{} and basename".format(classtag))]
assert len(basename) == 1
basename = basename[0]
# get the template parameters
tparams = [i for i in retrieve_cache_items(condition="{} and template_param".format(classtag))]
tparam_str = ''
if len(tparams) > 0:
tparam_str = '<{}>'.format(', '.join(t for t in tparams))
return basename, basename + tparam_str
def assembly_routine_signature():
from dune.perftool.generation import get_global_context_value
integral_type = get_global_context_value("integral_type")
form_type = get_global_context_value("form_type")
if form_type == 'residual':
if integral_type == 'cell':
from dune.perftool.pdelab.signatures import alpha_volume_signature
return alpha_volume_signature()
if integral_type == 'exterior_facet':
from dune.perftool.pdelab.signatures import alpha_boundary_signature
return alpha_boundary_signature()
if integral_type == 'interior_facet':
from dune.perftool.pdelab.signatures import alpha_skeleton_signature
return alpha_skeleton_signature()
if form_type == 'jacobian':
if integral_type == 'cell':
from dune.perftool.pdelab.signatures import jacobian_volume_signature
return jacobian_volume_signature()
if integral_type == 'exterior_facet':
from dune.perftool.pdelab.signatures import jacobian_boundary_signature
return jacobian_boundary_signature()
if integral_type == 'interior_facet':
from dune.perftool.pdelab.signatures import jacobian_skeleton_signature
return jacobian_skeleton_signature()
assert False
def generate_kernel(integrals):
for integral in integrals:
integrand = integral.integrand()
measure = integral.integral_type()
subdomain_id = integral.subdomain_id()
subdomain_data = integral.subdomain_data()
# Now split the given integrand into accumulation expressions
from dune.perftool.ufl.transformations.extract_accumulation_terms import split_into_accumulation_terms
accterms = split_into_accumulation_terms(integrand)
# Iterate over the terms and generate a kernel
for term in accterms:
from dune.perftool.loopy.transformer import transform_accumulation_term
transform_accumulation_term(term, measure, subdomain_id)
# Extract the information, which is needed to create a loopy kernel.
# First extracting it, might be useful to alter it before kernel generation.
from dune.perftool.generation import retrieve_cache_items
from dune.perftool.loopy.target import DuneTarget
domains = [i for i in retrieve_cache_items("domain")]
instructions = [i for i in retrieve_cache_items("instruction")]
temporaries = {i.name: i for i in retrieve_cache_items("temporary")}
arguments = [i for i in retrieve_cache_items("argument")]
manglers = [i for i in retrieve_cache_items("mangler")]
kernel = make_kernel(domains,
instructions,
arguments,
temporary_variables=temporaries,
function_manglers=manglers,
target=DuneTarget()
)
from loopy import make_reduction_inames_unique
kernel = make_reduction_inames_unique(kernel)
kernel = preprocess_kernel(kernel)
# Loopy might have introduced some temporary variables during preprocessing. As I want to have my own
# temporary declaration code right now, I call the declaration preamble manually.
for added_tv in set(kernel.temporary_variables.keys()) - set(temporaries.keys()):
from dune.perftool.generation.loopy import default_declaration
default_declaration(added_tv)
# Now add the preambles to the kernel
preambles = [(i, p) for i, p in enumerate(retrieve_cache_items("preamble"))]
kernel = kernel.copy(preambles=preambles)
# All items with the kernel tags can be destroyed once a kernel has been generated
from dune.perftool.generation import delete_cache_items
delete_cache_items("(not file) and (not clazz)")
# Return the actual code (might instead return kernels...)
class AssemblyMethod(ClassMember):
def __init__(self, signature, kernel):
from loopy import generate_code
from cgen import LiteralLines, Block
if kernel is not None:
content.extend(' ' + l for l in generate_code(kernel)[0].split('\n'))
ClassMember.__init__(self, content)
from dune.perftool.generation import retrieve_cache_items
# Generate the name by concatenating basename and template parameters
basename, fullname = class_type_from_cache(tag)
base_classes = [bc for bc in retrieve_cache_items('{} and baseclass'.format(tag))]
constructor_params = [bc for bc in retrieve_cache_items('{} and constructor_param'.format(tag))]
il = [i for i in retrieve_cache_items('{} and initializer'.format(tag))]
pm = [m for m in retrieve_cache_items('{} and member'.format(tag))]
tparams = [i for i in retrieve_cache_items('{} and template_param'.format(tag))]
from dune.perftool.cgen.clazz import Constructor
constructor = Constructor(arg_decls=constructor_params, clsname=basename, initializer_list=il)
return Class(basename, base_classes=base_classes, members=members + pm, constructors=[constructor], tparam_decls=tparams)
def generate_localoperator_kernels(formdata, namedata):
# Extract the relevant attributes of the form data
form = formdata.preprocessed_form
from dune.perftool.generation import delete_cache_items
delete_cache_items()
# Manage includes and base classes that we always need
include_file('dune/pdelab/gridfunctionspace/gridfunctionspaceutilities.hh', filetag="operatorfile")
include_file('dune/pdelab/localoperator/idefault.hh', filetag="operatorfile")
include_file('dune/pdelab/localoperator/flags.hh', filetag="operatorfile")
include_file('dune/pdelab/localoperator/pattern.hh', filetag="operatorfile")
# Trigger this one once early on to avoid wrong stuff happening
localoperator_basename()
lop_template_ansatz_gfs()
lop_template_test_gfs()
from dune.perftool.pdelab.parameter import parameterclass_basename
parameterclass_basename()
# Make sure there is always the same constructor arguments (even if parameter class is empty)
from dune.perftool.pdelab.localoperator import name_initree_member
name_initree_member()
from dune.perftool.pdelab.parameter import name_paramclass
name_paramclass()
base_class('Dune::PDELab::LocalOperatorDefaultFlags', classtag="operator")
from dune.perftool.generation import global_context
with global_context(formdata=formdata, namedata=namedata):
with global_context(form_type='residual'):
# Generate the necessary residual methods
for measure in set(i.integral_type() for i in form.integrals()):
with global_context(integral_type=measure):
# Reset the outer loop
from dune.perftool.loopy.transformer import set_outerloop
set_outerloop(None)
enum_pattern()
pattern_baseclass()
enum_alpha()
kernel = generate_kernel(form.integrals_by_type(measure))
# Maybe add numerical differentiation
if get_option("numerical_jacobian"):
include_file("dune/pdelab/localoperator/defaultimp.hh", filetag="operatorfile")
_, loptype = class_type_from_cache("operator")
which = ufl_measure_to_pdelab_measure(measure)
base_class("Dune::PDELab::NumericalJacobian{}<{}>".format(which, loptype), classtag="operator")
# Add the initializer list for that base class
ini = name_initree_member()
ini_constructor = name_initree_constructor_param()
initializer_list("Dune::PDELab::NumericalJacobian{}<{}>".format(which, loptype),
["{}.get<double>(\"numerical_epsilon.{}\", 1e-9)".format(ini_constructor, ini, which.lower())],
classtag="operator",
)
operator_kernels[(measure, 'residual')] = kernel
# Generate the necessary jacobian methods
if not get_option("numerical_jacobian"):
from ufl import derivative
from ufl.algorithms import expand_derivatives
jacform = expand_derivatives(derivative(form, form.coefficients()[0]))
with global_context(form_type="jacobian"):
for measure in set(i.integral_type() for i in jacform.integrals()):
# Reset the outer loop
from dune.perftool.loopy.transformer import set_outerloop
set_outerloop(None)
with global_context(integral_type=measure):
kernel = generate_kernel(jacform.integrals_by_type(measure))
operator_kernels[(measure, 'jacobian')] = kernel
# Generate dummy functions for those kernels, that vanished in the differentiation process
# We *could* solve this problem by using lambda_* terms but we do not really want that, so
# we use empty jacobian assembly methods instead
alpha_measures = set(i.integral_type() for i in form.integrals())
jacobian_measures = set(i.integral_type() for i in jacform.integrals())
for it in alpha_measures - jacobian_measures:
operator_kernels[(it, 'jacobian')] = None
# TODO: JacobianApply for matrix-free computations.
# Return the set of generated kernels
return operator_kernels
def generate_localoperator_file(kernels):
operator_methods = []
# Make generables from the given kernels
for method, kernel in kernels.items():
it, ft = method
with global_context(integral_type=it, form_type=ft):
signature = assembly_routine_signature()
operator_methods.append(AssemblyMethod(signature, kernel))
# Write the file!
from dune.perftool.file import generate_file
param = cgen_class_from_cache("parameterclass")
# TODO take the name of this thing from the UFL file
lop = cgen_class_from_cache("operator", members=operator_methods)
generate_file(get_option("operator_file"), "operatorfile", [param, lop])