Newer
Older
# 4. test multiple optimizers and multiple parameter shceduers
cfg = dict(
key1=dict(type='MultiStepLR', milestones=[1, 2]),
key2=[
dict(type='MultiStepLR', milestones=[1, 2]),
dict(type='StepLR', step_size=1)
])
param_schedulers = runner.build_param_scheduler(cfg)
self.assertIsInstance(param_schedulers, dict)
self.assertEqual(len(param_schedulers), 2)
self.assertEqual(len(param_schedulers['key1']), 1)
self.assertEqual(len(param_schedulers['key2']), 2)
# 5. test converting epoch-based scheduler to iter-based
runner.optim_wrapper = runner.build_optim_wrapper(
dict(type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)))
# 5.1 train loop should be built before converting scheduler
cfg = dict(
type='MultiStepLR', milestones=[1, 2], convert_to_iter_based=True)
# 5.2 convert epoch-based to iter-based scheduler
cfg = dict(
type='MultiStepLR',
milestones=[1, 2],
begin=1,
end=7,
convert_to_iter_based=True)
runner._train_loop = runner.build_train_loop(runner.train_loop)
param_schedulers = runner.build_param_scheduler(cfg)
self.assertFalse(param_schedulers[0].by_epoch)
self.assertEqual(param_schedulers[0].begin, 4)
self.assertEqual(param_schedulers[0].end, 28)
# 6. test set default end of schedulers
cfg = dict(type='MultiStepLR', milestones=[1, 2], begin=1)
param_schedulers = runner.build_param_scheduler(cfg)
self.assertTrue(param_schedulers[0].by_epoch)
self.assertEqual(param_schedulers[0].begin, 1)
# runner.max_epochs = 3
self.assertEqual(param_schedulers[0].end, 3)
cfg = dict(
type='MultiStepLR',
milestones=[1, 2],
begin=1,
convert_to_iter_based=True)
param_schedulers = runner.build_param_scheduler(cfg)
self.assertFalse(param_schedulers[0].by_epoch)
self.assertEqual(param_schedulers[0].begin, 4)
# runner.max_iters = 3*4
self.assertEqual(param_schedulers[0].end, 12)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_build_evaluator'
runner = Runner.from_cfg(cfg)
# input is a BaseEvaluator or ComposedEvaluator object
evaluator = Evaluator(ToyMetric1())
self.assertEqual(id(runner.build_evaluator(evaluator)), id(evaluator))
evaluator = Evaluator([ToyMetric1(), ToyMetric2()])
self.assertEqual(id(runner.build_evaluator(evaluator)), id(evaluator))
# input is a dict
evaluator = dict(type='ToyMetric1')
self.assertIsInstance(runner.build_evaluator(evaluator), Evaluator)
# input is a list of dict
evaluator = [dict(type='ToyMetric1'), dict(type='ToyMetric2')]
self.assertIsInstance(runner.build_evaluator(evaluator), Evaluator)
# test collect device
evaluator = [
dict(type='ToyMetric1', collect_device='cpu'),
dict(type='ToyMetric2', collect_device='gpu')
]
_evaluator = runner.build_evaluator(evaluator)
self.assertEqual(_evaluator.metrics[0].collect_device, 'cpu')
self.assertEqual(_evaluator.metrics[1].collect_device, 'gpu')
# test build a customize evaluator
evaluator = dict(
type='ToyEvaluator',
metrics=[
dict(type='ToyMetric1', collect_device='cpu'),
dict(type='ToyMetric2', collect_device='gpu')
])
_evaluator = runner.build_evaluator(evaluator)
self.assertIsInstance(runner.build_evaluator(evaluator), ToyEvaluator)
self.assertEqual(_evaluator.metrics[0].collect_device, 'cpu')
self.assertEqual(_evaluator.metrics[1].collect_device, 'gpu')
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_build_dataloader'
runner = Runner.from_cfg(cfg)
cfg = dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=1,
num_workers=0)
seed = np.random.randint(2**31)
dataloader = runner.build_dataloader(cfg, seed=seed)
self.assertIsInstance(dataloader, DataLoader)
self.assertIsInstance(dataloader.dataset, ToyDataset)
self.assertIsInstance(dataloader.sampler, DefaultSampler)
self.assertEqual(dataloader.sampler.seed, seed)
# diff_rank_seed is True
dataloader = runner.build_dataloader(
cfg, seed=seed, diff_rank_seed=True)
self.assertNotEqual(dataloader.sampler.seed, seed)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_build_train_loop'
runner = Runner.from_cfg(cfg)
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
# input should be a Loop object or dict
with self.assertRaisesRegex(TypeError, 'should be'):
runner.build_train_loop('invalid-type')
# Only one of type or by_epoch can exist in cfg
cfg = dict(type='EpochBasedTrainLoop', by_epoch=True, max_epochs=3)
with self.assertRaisesRegex(RuntimeError, 'Only one'):
runner.build_train_loop(cfg)
# input is a dict and contains type key
cfg = dict(type='EpochBasedTrainLoop', max_epochs=3)
loop = runner.build_train_loop(cfg)
self.assertIsInstance(loop, EpochBasedTrainLoop)
cfg = dict(type='IterBasedTrainLoop', max_iters=3)
loop = runner.build_train_loop(cfg)
self.assertIsInstance(loop, IterBasedTrainLoop)
# input is a dict and does not contain type key
cfg = dict(by_epoch=True, max_epochs=3)
loop = runner.build_train_loop(cfg)
self.assertIsInstance(loop, EpochBasedTrainLoop)
cfg = dict(by_epoch=False, max_iters=3)
loop = runner.build_train_loop(cfg)
self.assertIsInstance(loop, IterBasedTrainLoop)
# input is a Loop object
self.assertEqual(id(runner.build_train_loop(loop)), id(loop))
# param_schedulers can be None
cfg = dict(type='EpochBasedTrainLoop', max_epochs=3)
runner.param_schedulers = None
loop = runner.build_train_loop(cfg)
self.assertIsInstance(loop, EpochBasedTrainLoop)
# test custom training loop
cfg = dict(type='CustomTrainLoop', max_epochs=3)
loop = runner.build_train_loop(cfg)
self.assertIsInstance(loop, CustomTrainLoop)
def test_build_val_loop(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_build_val_loop'
runner = Runner.from_cfg(cfg)
# input should be a Loop object or dict
with self.assertRaisesRegex(TypeError, 'should be'):
runner.build_test_loop('invalid-type')
# input is a dict and contains type key
RangiLyu
committed
cfg = dict(type='ValLoop')
loop = runner.build_test_loop(cfg)
self.assertIsInstance(loop, ValLoop)
# input is a dict but does not contain type key
RangiLyu
committed
cfg = dict()
loop = runner.build_val_loop(cfg)
self.assertIsInstance(loop, ValLoop)
# input is a Loop object
self.assertEqual(id(runner.build_val_loop(loop)), id(loop))
# test custom validation loop
RangiLyu
committed
cfg = dict(type='CustomValLoop')
loop = runner.build_val_loop(cfg)
self.assertIsInstance(loop, CustomValLoop)
def test_build_test_loop(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_build_test_loop'
runner = Runner.from_cfg(cfg)
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
# input should be a Loop object or dict
with self.assertRaisesRegex(TypeError, 'should be'):
runner.build_test_loop('invalid-type')
# input is a dict and contains type key
cfg = dict(type='TestLoop')
loop = runner.build_test_loop(cfg)
self.assertIsInstance(loop, TestLoop)
# input is a dict but does not contain type key
cfg = dict()
loop = runner.build_test_loop(cfg)
self.assertIsInstance(loop, TestLoop)
# input is a Loop object
self.assertEqual(id(runner.build_test_loop(loop)), id(loop))
# test custom validation loop
cfg = dict(type='CustomTestLoop')
loop = runner.build_val_loop(cfg)
self.assertIsInstance(loop, CustomTestLoop)
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
def test_build_log_processor(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_build_log_processor'
runner = Runner.from_cfg(cfg)
# input should be a LogProcessor object or dict
with self.assertRaisesRegex(TypeError, 'should be'):
runner.build_log_processor('invalid-type')
# input is a dict and contains type key
cfg = dict(type='LogProcessor')
log_processor = runner.build_log_processor(cfg)
self.assertIsInstance(log_processor, LogProcessor)
# input is a dict but does not contain type key
cfg = dict()
log_processor = runner.build_log_processor(cfg)
self.assertIsInstance(log_processor, LogProcessor)
# input is a LogProcessor object
self.assertEqual(
id(runner.build_log_processor(log_processor)), id(log_processor))
# test custom validation log_processor
cfg = dict(type='CustomLogProcessor')
log_processor = runner.build_log_processor(cfg)
self.assertIsInstance(log_processor, CustomLogProcessor)
def test_train(self):
# 1. test `self.train_loop` is None
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('train_dataloader')
cfg.pop('train_cfg')
with self.assertRaisesRegex(RuntimeError, 'should not be None'):
runner.train()
# 2. test iter and epoch counter of EpochBasedTrainLoop and timing of
# running ValLoop
iter_targets = [i for i in range(4 * 3)]
batch_idx_results = []
batch_idx_targets = [i for i in range(4)] * 3 # train and val
val_epoch_results = []
val_epoch_targets = [i for i in range(2, 4)]
def before_train_epoch(self, runner):
epoch_results.append(runner.epoch)
def before_train_iter(self, runner, batch_idx, data_batch=None):
batch_idx_results.append(batch_idx)
def before_val_epoch(self, runner):
val_epoch_results.append(runner.epoch)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_train2'
cfg.custom_hooks = [dict(type='TestEpochHook', priority=50)]
RangiLyu
committed
cfg.train_cfg = dict(by_epoch=True, max_epochs=3, val_begin=2)
self.assertEqual(runner.optim_wrapper._inner_count, 12)
self.assertEqual(runner.optim_wrapper._max_counts, 12)
assert isinstance(runner.train_loop, EpochBasedTrainLoop)
for result, target, in zip(epoch_results, epoch_targets):
self.assertEqual(result, target)
for result, target, in zip(iter_results, iter_targets):
self.assertEqual(result, target)
for result, target, in zip(batch_idx_results, batch_idx_targets):
for result, target, in zip(val_epoch_results, val_epoch_targets):
self.assertEqual(result, target)
# 3. test iter and epoch counter of IterBasedTrainLoop and timing of
# running ValLoop
val_iter_results = []
val_batch_idx_results = []
batch_idx_targets = [i for i in range(12)]
val_iter_targets = [i for i in range(4, 12)]
val_batch_idx_targets = [i for i in range(4)] * 2
def before_train_epoch(self, runner):
epoch_results.append(runner.epoch)
def before_train_iter(self, runner, batch_idx, data_batch=None):
batch_idx_results.append(batch_idx)
def before_val_iter(self, runner, batch_idx, data_batch=None):
val_epoch_results.append(runner.iter)
val_batch_idx_results.append(batch_idx)
cfg = copy.deepcopy(self.iter_based_cfg)
cfg.experiment_name = 'test_train3'
cfg.custom_hooks = [dict(type='TestIterHook', priority=50)]
RangiLyu
committed
cfg.train_cfg = dict(
by_epoch=False, max_iters=12, val_interval=4, val_begin=4)
self.assertEqual(runner.optim_wrapper._inner_count, 12)
self.assertEqual(runner.optim_wrapper._max_counts, 12)
assert isinstance(runner.train_loop, IterBasedTrainLoop)
RangiLyu
committed
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
self.assertEqual(len(epoch_results), 1)
self.assertEqual(epoch_results[0], 0)
self.assertEqual(runner.val_interval, 4)
self.assertEqual(runner.val_begin, 4)
for result, target, in zip(iter_results, iter_targets):
self.assertEqual(result, target)
for result, target, in zip(batch_idx_results, batch_idx_targets):
self.assertEqual(result, target)
for result, target, in zip(val_iter_results, val_iter_targets):
self.assertEqual(result, target)
for result, target, in zip(val_batch_idx_results,
val_batch_idx_targets):
self.assertEqual(result, target)
# 4. test iter and epoch counter of IterBasedTrainLoop and timing of
# running ValLoop without InfiniteSampler
epoch_results = []
iter_results = []
batch_idx_results = []
val_iter_results = []
val_batch_idx_results = []
iter_targets = [i for i in range(12)]
batch_idx_targets = [i for i in range(12)]
val_iter_targets = [i for i in range(4, 12)]
val_batch_idx_targets = [i for i in range(4)] * 2
cfg = copy.deepcopy(self.iter_based_cfg)
cfg.experiment_name = 'test_train4'
cfg.train_dataloader.sampler = dict(
type='DefaultSampler', shuffle=True)
cfg.custom_hooks = [dict(type='TestIterHook', priority=50)]
cfg.train_cfg = dict(
by_epoch=False, max_iters=12, val_interval=4, val_begin=4)
runner = Runner.from_cfg(cfg)
with self.assertWarnsRegex(
Warning,
'Reach the end of the dataloader, it will be restarted and '
'continue to iterate.'):
runner.train()
assert isinstance(runner.train_loop, IterBasedTrainLoop)
assert isinstance(runner.train_loop.dataloader_iterator,
_InfiniteDataloaderIterator)
self.assertEqual(len(epoch_results), 1)
self.assertEqual(epoch_results[0], 0)
RangiLyu
committed
self.assertEqual(runner.val_interval, 4)
self.assertEqual(runner.val_begin, 4)
for result, target, in zip(iter_results, iter_targets):
self.assertEqual(result, target)
for result, target, in zip(batch_idx_results, batch_idx_targets):
for result, target, in zip(val_iter_results, val_iter_targets):
self.assertEqual(result, target)
for result, target, in zip(val_batch_idx_results,
val_batch_idx_targets):
self.assertEqual(result, target)
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
# 5. test dynamic interval in IterBasedTrainLoop
max_iters = 12
interval = 5
dynamic_intervals = [(11, 2)]
iter_results = []
iter_targets = [5, 10, 12]
val_interval_results = []
val_interval_targets = [5] * 10 + [2] * 2
@HOOKS.register_module()
class TestIterDynamicIntervalHook(Hook):
def before_val(self, runner):
iter_results.append(runner.iter)
def before_train_iter(self, runner, batch_idx, data_batch=None):
val_interval_results.append(runner.train_loop.val_interval)
cfg = copy.deepcopy(self.iter_based_cfg)
cfg.experiment_name = 'test_train5'
cfg.train_dataloader.sampler = dict(
type='DefaultSampler', shuffle=True)
cfg.custom_hooks = [
dict(type='TestIterDynamicIntervalHook', priority=50)
]
cfg.train_cfg = dict(
by_epoch=False,
max_iters=max_iters,
val_interval=interval,
dynamic_intervals=dynamic_intervals)
runner = Runner.from_cfg(cfg)
runner.train()
for result, target, in zip(iter_results, iter_targets):
self.assertEqual(result, target)
for result, target, in zip(val_interval_results, val_interval_targets):
self.assertEqual(result, target)
# 6. test dynamic interval in EpochBasedTrainLoop
max_epochs = 12
interval = 5
dynamic_intervals = [(11, 2)]
epoch_results = []
epoch_targets = [5, 10, 12]
val_interval_results = []
val_interval_targets = [5] * 10 + [2] * 2
@HOOKS.register_module()
class TestEpochDynamicIntervalHook(Hook):
def before_val_epoch(self, runner):
epoch_results.append(runner.epoch)
def before_train_epoch(self, runner):
val_interval_results.append(runner.train_loop.val_interval)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_train6'
cfg.train_dataloader.sampler = dict(
type='DefaultSampler', shuffle=True)
cfg.custom_hooks = [
dict(type='TestEpochDynamicIntervalHook', priority=50)
]
cfg.train_cfg = dict(
by_epoch=True,
max_epochs=max_epochs,
val_interval=interval,
dynamic_intervals=dynamic_intervals)
runner = Runner.from_cfg(cfg)
runner.train()
for result, target, in zip(epoch_results, epoch_targets):
self.assertEqual(result, target)
for result, target, in zip(val_interval_results, val_interval_targets):
self.assertEqual(result, target)
# 7. test init weights
@MODELS.register_module()
class ToyModel2(ToyModel):
def __init__(self):
super().__init__()
self.initiailzed = False
def init_weights(self):
self.initiailzed = True
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_train7'
runner = Runner.from_cfg(cfg)
model = ToyModel2()
runner.model = model
runner.train()
self.assertTrue(model.initiailzed)
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
# 8.1 test train with multiple optimizer and single list of schedulers.
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_train8'
cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2])
cfg.optim_wrapper = dict(
linear1=dict(
type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)),
linear2=dict(
type='OptimWrapper', optimizer=dict(type='Adam', lr=0.02)),
constructor='ToyMultipleOptimizerConstructor')
cfg.model = dict(type='ToyGANModel')
runner = runner.from_cfg(cfg)
runner.train()
# 8.1 Test train with multiple optimizer and single schedulers.
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_train8.1.1'
cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2])
cfg.optim_wrapper = dict(
linear1=dict(
type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)),
linear2=dict(
type='OptimWrapper', optimizer=dict(type='Adam', lr=0.02)),
constructor='ToyMultipleOptimizerConstructor')
cfg.model = dict(type='ToyGANModel')
runner = runner.from_cfg(cfg)
runner.train()
# Test list like single scheduler.
cfg.experiment_name = 'test_train8.1.2'
cfg.param_scheduler = [dict(type='MultiStepLR', milestones=[1, 2])]
runner = runner.from_cfg(cfg)
runner.train()
# 8.2 Test train with multiple optimizer and multiple schedulers.
cfg.experiment_name = 'test_train8.2.1'
cfg.param_scheduler = dict(
linear1=dict(type='MultiStepLR', milestones=[1, 2]),
linear2=dict(type='MultiStepLR', milestones=[1, 2]),
)
runner = runner.from_cfg(cfg)
runner.train()
cfg.experiment_name = 'test_train8.2.2'
cfg.param_scheduler = dict(
linear1=[dict(type='MultiStepLR', milestones=[1, 2])],
linear2=[dict(type='MultiStepLR', milestones=[1, 2])],
)
runner = runner.from_cfg(cfg)
runner.train()
# 9 Test training with a dataset without metainfo
cfg = copy.deepcopy(cfg)
cfg.train_dataloader.dataset = dict(type='ToyDatasetNoMeta')
runner = runner.from_cfg(cfg)
runner.train()
def test_val(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('val_dataloader')
cfg.pop('val_cfg')
cfg.pop('val_evaluator')
with self.assertRaisesRegex(RuntimeError, 'should not be None'):
runner.val()
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_val2'
runner = Runner.from_cfg(cfg)
# test run val without train and test components
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_individually_val'
cfg.pop('train_dataloader')
cfg.pop('train_cfg')
cfg.pop('param_scheduler')
cfg.pop('test_dataloader')
cfg.pop('test_cfg')
cfg.pop('test_evaluator')
runner = Runner.from_cfg(cfg)
# Test default fp32 `autocast` context.
predictions = []
def get_outputs_callback(module, inputs, outputs):
predictions.append(outputs)
runner.model.register_forward_hook(get_outputs_callback)
self.assertEqual(predictions[0].dtype, torch.float32)
predictions.clear()
# Test fp16 `autocast` context.
cfg.experiment_name = 'test_val3'
cfg.val_cfg = dict(fp16=True)
runner = Runner.from_cfg(cfg)
runner.model.register_forward_hook(get_outputs_callback)
if (digit_version(TORCH_VERSION) < digit_version('1.10.0')
and not torch.cuda.is_available()):
with self.assertRaisesRegex(RuntimeError, 'If pytorch versions'):
runner.val()
else:
runner.val()
self.assertIn(predictions[0].dtype,
(torch.float16, torch.bfloat16))
def test_test(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('test_dataloader')
cfg.pop('test_cfg')
cfg.pop('test_evaluator')
with self.assertRaisesRegex(RuntimeError, 'should not be None'):
runner.test()
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_test2'
runner = Runner.from_cfg(cfg)
# Test run test without building train loop.
self.assertIsInstance(runner._train_loop, dict)
# test run test without train and test components
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_individually_test'
cfg.pop('train_dataloader')
cfg.pop('train_cfg')
cfg.pop('param_scheduler')
cfg.pop('val_dataloader')
cfg.pop('val_cfg')
cfg.pop('val_evaluator')
runner = Runner.from_cfg(cfg)
# Test default fp32 `autocast` context.
predictions = []
def get_outputs_callback(module, inputs, outputs):
predictions.append(outputs)
runner.model.register_forward_hook(get_outputs_callback)
self.assertEqual(predictions[0].dtype, torch.float32)
predictions.clear()
# Test fp16 `autocast` context.
cfg.experiment_name = 'test_val3'
cfg.test_cfg = dict(fp16=True)
runner = Runner.from_cfg(cfg)
runner.model.register_forward_hook(get_outputs_callback)
if (digit_version(TORCH_VERSION) < digit_version('1.10.0')
and not torch.cuda.is_available()):
with self.assertRaisesRegex(RuntimeError, 'If pytorch versions'):
runner.test()
else:
runner.test()
self.assertIn(predictions[0].dtype,
(torch.float16, torch.bfloat16))
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_register_hook'
runner = Runner.from_cfg(cfg)
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
runner._hooks = []
# 1. test `hook` parameter
# 1.1 `hook` should be either a Hook object or dict
with self.assertRaisesRegex(
TypeError, 'hook should be an instance of Hook or dict'):
runner.register_hook(['string'])
# 1.2 `hook` is a dict
timer_cfg = dict(type='IterTimerHook')
runner.register_hook(timer_cfg)
self.assertEqual(len(runner._hooks), 1)
self.assertTrue(isinstance(runner._hooks[0], IterTimerHook))
# default priority of `IterTimerHook` is 'NORMAL'
self.assertEqual(
get_priority(runner._hooks[0].priority), get_priority('NORMAL'))
runner._hooks = []
# 1.2.1 `hook` is a dict and contains `priority` field
# set the priority of `IterTimerHook` as 'BELOW_NORMAL'
timer_cfg = dict(type='IterTimerHook', priority='BELOW_NORMAL')
runner.register_hook(timer_cfg)
self.assertEqual(len(runner._hooks), 1)
self.assertTrue(isinstance(runner._hooks[0], IterTimerHook))
self.assertEqual(
get_priority(runner._hooks[0].priority),
get_priority('BELOW_NORMAL'))
# 1.3 `hook` is a hook object
runtime_info_hook = RuntimeInfoHook()
runner.register_hook(runtime_info_hook)
self.assertEqual(len(runner._hooks), 2)
# The priority of `runtime_info_hook` is `HIGH` which is greater than
# `IterTimerHook`, so the first item of `_hooks` should be
# `runtime_info_hook`
self.assertTrue(isinstance(runner._hooks[0], RuntimeInfoHook))
get_priority(runner._hooks[0].priority), get_priority('VERY_HIGH'))
# 2. test `priority` parameter
# `priority` argument is not None and it will be set as priority of
# hook
param_scheduler_cfg = dict(type='ParamSchedulerHook', priority='LOW')
runner.register_hook(param_scheduler_cfg, priority='VERY_LOW')
self.assertEqual(len(runner._hooks), 3)
self.assertTrue(isinstance(runner._hooks[2], ParamSchedulerHook))
self.assertEqual(
get_priority(runner._hooks[2].priority), get_priority('VERY_LOW'))
# `priority` is Priority
logger_cfg = dict(type='LoggerHook', priority='BELOW_NORMAL')
runner.register_hook(logger_cfg, priority=Priority.VERY_LOW)
self.assertEqual(len(runner._hooks), 4)
self.assertTrue(isinstance(runner._hooks[3], LoggerHook))
self.assertEqual(
get_priority(runner._hooks[3].priority), get_priority('VERY_LOW'))
def test_default_hooks(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_default_hooks'
runner = Runner.from_cfg(cfg)
# register 7 hooks by default
self.assertEqual(len(runner._hooks), 6)
# the third registered hook should be `DistSamplerSeedHook`
self.assertTrue(isinstance(runner._hooks[2], DistSamplerSeedHook))
# the fifth registered hook should be `ParamSchedulerHook`
self.assertTrue(isinstance(runner._hooks[4], ParamSchedulerHook))
runner._hooks = []
# remove `ParamSchedulerHook` from default hooks
runner.register_default_hooks(hooks=dict(timer=None))
self.assertEqual(len(runner._hooks), 5)
# `ParamSchedulerHook` was popped so the fifth is `CheckpointHook`
self.assertTrue(isinstance(runner._hooks[4], CheckpointHook))
# add a new default hook
runner._hooks = []
runner.register_default_hooks(hooks=dict(ToyHook=dict(type='ToyHook')))
self.assertEqual(len(runner._hooks), 7)
self.assertTrue(isinstance(runner._hooks[6], ToyHook))
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_custom_hooks'
runner = Runner.from_cfg(cfg)
self.assertEqual(len(runner._hooks), 6)
custom_hooks = [dict(type='ToyHook')]
runner.register_custom_hooks(custom_hooks)
self.assertEqual(len(runner._hooks), 7)
self.assertTrue(isinstance(runner._hooks[6], ToyHook))
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_register_hooks'
runner = Runner.from_cfg(cfg)
runner._hooks = []
custom_hooks = [dict(type='ToyHook')]
runner.register_hooks(custom_hooks=custom_hooks)
# six default hooks + custom hook (ToyHook)
self.assertEqual(len(runner._hooks), 7)
self.assertTrue(isinstance(runner._hooks[6], ToyHook))
def test_custom_loop(self):
# test custom loop with additional hook
@LOOPS.register_module()
class CustomTrainLoop2(IterBasedTrainLoop):
"""Custom train loop with additional warmup stage."""
def __init__(self, runner, dataloader, max_iters, warmup_loader,
runner=runner, dataloader=dataloader, max_iters=max_iters)
self.warmup_loader = self.runner.build_dataloader(
warmup_loader)
self.max_warmup_iters = max_warmup_iters
def run(self):
self.runner.call_hook('before_train')
self.runner.cur_dataloader = self.warmup_loader
for idx, data_batch in enumerate(self.warmup_loader, 1):
self.runner.cur_dataloader = self.warmup_loader
self.runner.call_hook('before_train_epoch')
while self.runner.iter < self._max_iters:
data_batch = next(self.dataloader_iterator)
self.runner.call_hook('after_train_epoch')
self.runner.call_hook('after_train')
self.runner.call_hook(
'before_warmup_iter', data_batch=data_batch)
train_logs = self.runner.model.train_step(
data_batch, self.runner.optim_wrapper)
self.runner.message_hub.update_info('train_logs', train_logs)
'after_warmup_iter', data_batch=data_batch)
before_warmup_iter_results = []
after_warmup_iter_results = []
@HOOKS.register_module()
class TestWarmupHook(Hook):
"""test custom train loop."""
def before_warmup_iter(self, runner, data_batch=None):
before_warmup_iter_results.append('before')
def after_warmup_iter(self, runner, data_batch=None, outputs=None):
self.iter_based_cfg.train_cfg = dict(
type='CustomTrainLoop2',
max_iters=10,
warmup_loader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='InfiniteSampler', shuffle=True),
batch_size=1,
num_workers=0),
max_warmup_iters=5)
self.iter_based_cfg.custom_hooks = [
dict(type='TestWarmupHook', priority=50)
]
self.iter_based_cfg.experiment_name = 'test_custom_loop'
runner = Runner.from_cfg(self.iter_based_cfg)
self.assertIsInstance(runner.train_loop, CustomTrainLoop2)
# test custom hook triggered as expected
self.assertEqual(len(before_warmup_iter_results), 5)
self.assertEqual(len(after_warmup_iter_results), 5)
for before, after in zip(before_warmup_iter_results,
after_warmup_iter_results):
self.assertEqual(before, 'before')
self.assertEqual(after, 'after')
def test_checkpoint(self):
# 1. test epoch based
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_checkpoint1'
runner = Runner.from_cfg(cfg)
# 1.1 test `save_checkpoint` which is called by `CheckpointHook`
path = osp.join(self.temp_dir, 'epoch_3.pth')
self.assertTrue(osp.exists(path))
self.assertFalse(osp.exists(osp.join(self.temp_dir, 'epoch_4.pth')))
ckpt = torch.load(path)
self.assertEqual(ckpt['meta']['epoch'], 3)
self.assertEqual(ckpt['meta']['iter'], 12)
self.assertEqual(ckpt['meta']['dataset_meta'],
runner.train_dataloader.dataset.metainfo)
self.assertEqual(ckpt['meta']['experiment_name'],
runner.experiment_name)
self.assertEqual(ckpt['meta']['seed'], runner.seed)
assert isinstance(ckpt['optimizer'], dict)
assert isinstance(ckpt['param_schedulers'], list)
self.assertIsInstance(ckpt['message_hub'], dict)
message_hub = MessageHub.get_instance('test_ckpt')
message_hub.load_state_dict(ckpt['message_hub'])
self.assertEqual(message_hub.get_info('epoch'), 2)
self.assertEqual(message_hub.get_info('iter'), 11)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_checkpoint2'
cfg.optim_wrapper = dict(type='SGD', lr=0.2)
cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2, 3])
runner.load_checkpoint(path)
self.assertEqual(runner.epoch, 0)
self.assertEqual(runner.iter, 0)
self.assertTrue(runner._has_loaded)
# load checkpoint will not initialize optimizer and param_schedulers
# objects
self.assertIsInstance(runner.optim_wrapper, dict)
self.assertIsInstance(runner.param_schedulers, dict)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_checkpoint3'
cfg.optim_wrapper = dict(
type='OptimWrapper', optimizer=dict(type='SGD', lr=0.2))
cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2, 3])
runner.resume(path)
self.assertEqual(runner.epoch, 3)
self.assertEqual(runner.iter, 12)
self.assertTrue(runner._has_loaded)
self.assertIsInstance(runner.optim_wrapper.optimizer, SGD)
self.assertIsInstance(runner.optim_wrapper.optimizer, SGD)
self.assertEqual(runner.optim_wrapper.param_groups[0]['lr'], 0.0001)
self.assertIsInstance(runner.param_schedulers[0], MultiStepLR)
self.assertEqual(runner.param_schedulers[0].milestones, {1: 1, 2: 1})
self.assertIsInstance(runner.message_hub, MessageHub)
self.assertEqual(runner.message_hub.get_info('epoch'), 2)
self.assertEqual(runner.message_hub.get_info('iter'), 11)
self.assertEqual(MessageHub.get_current_instance().get_info('epoch'),
2)
self.assertEqual(MessageHub.get_current_instance().get_info('iter'),
11)
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
# 1.3.2 test resume with unmatched dataset_meta
ckpt_modified = copy.deepcopy(ckpt)
ckpt_modified['meta']['dataset_meta'] = {'CLASSES': ['cat', 'dog']}
# ckpt_modified['meta']['seed'] = 123
path_modified = osp.join(self.temp_dir, 'modified.pth')
torch.save(ckpt_modified, path_modified)
with self.assertWarnsRegex(
Warning, 'The dataset metainfo from the resumed checkpoint is '
'different from the current training dataset, please '
'check the correctness of the checkpoint or the training '
'dataset.'):
runner.resume(path_modified)
# 1.3.3 test resume with unmatched seed
ckpt_modified = copy.deepcopy(ckpt)
ckpt_modified['meta']['seed'] = 123
path_modified = osp.join(self.temp_dir, 'modified.pth')
torch.save(ckpt_modified, path_modified)
with self.assertWarnsRegex(
Warning, 'The value of random seed in the checkpoint'):
runner.resume(path_modified)
# 1.3.3 test resume with no seed and dataset meta
ckpt_modified = copy.deepcopy(ckpt)
ckpt_modified['meta'].pop('seed')
ckpt_modified['meta'].pop('dataset_meta')
path_modified = osp.join(self.temp_dir, 'modified.pth')
torch.save(ckpt_modified, path_modified)
runner.resume(path_modified)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_checkpoint4'
cfg.resume = True
runner = Runner.from_cfg(cfg)
runner.load_or_resume()
self.assertEqual(runner.epoch, 3)
self.assertEqual(runner.iter, 12)
self.assertTrue(runner._has_loaded)
self.assertIsInstance(runner.optim_wrapper.optimizer, SGD)
self.assertIsInstance(runner.param_schedulers[0], MultiStepLR)
# 1.5 test resume from a specified checkpoint
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_checkpoint5'
cfg.resume = True
cfg.load_from = osp.join(self.temp_dir, 'epoch_1.pth')
runner = Runner.from_cfg(cfg)
runner.load_or_resume()
self.assertEqual(runner.epoch, 1)
self.assertEqual(runner.iter, 4)
self.assertTrue(runner._has_loaded)
self.assertIsInstance(runner.optim_wrapper.optimizer, SGD)
self.assertIsInstance(runner.param_schedulers[0], MultiStepLR)
# 1.6 multiple optimizers
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_checkpoint6'
cfg.optim_wrapper = dict(
linear1=dict(
type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)),
linear2=dict(
type='OptimWrapper', optimizer=dict(type='Adam', lr=0.02)),
constructor='ToyMultipleOptimizerConstructor')
cfg.model = dict(type='ToyGANModel')
# disable OptimizerHook because it only works with one optimizer
runner = Runner.from_cfg(cfg)
runner.train()
path = osp.join(self.temp_dir, 'epoch_3.pth')
self.assertTrue(osp.exists(path))
self.assertEqual(runner.optim_wrapper['linear1'].param_groups[0]['lr'],
self.assertIsInstance(runner.optim_wrapper['linear2'].optimizer, Adam)
self.assertEqual(runner.optim_wrapper['linear2'].param_groups[0]['lr'],
0.0002)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_checkpoint7'
cfg.optim_wrapper = dict(
linear1=dict(
type='OptimWrapper', optimizer=dict(type='SGD', lr=0.2)),
linear2=dict(
type='OptimWrapper', optimizer=dict(type='Adam', lr=0.03)),
constructor='ToyMultipleOptimizerConstructor')
cfg.model = dict(type='ToyGANModel')
cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2, 3])
runner = Runner.from_cfg(cfg)
runner.resume(path)
self.assertIsInstance(runner.optim_wrapper, OptimWrapperDict)
self.assertIsInstance(runner.optim_wrapper['linear1'].optimizer, SGD)