Newer
Older
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD, Adam
from torch.utils.data import DataLoader, Dataset
from mmengine.config import Config
from mmengine.data import DefaultSampler
from mmengine.evaluator import BaseMetric, Evaluator
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, Hook,
IterTimerHook, LoggerHook, ParamSchedulerHook,
RuntimeInfoHook)
from mmengine.logging import LogProcessor, MessageHub, MMLogger
from mmengine.model import BaseDataPreprocessor, BaseModel, ImgDataPreprocessor
from mmengine.optim import (DefaultOptimWrapperConstructor, MultiStepLR,
OptimWrapper, OptimWrapperDict, StepLR)
from mmengine.registry import (DATASETS, EVALUATOR, HOOKS, LOG_PROCESSORS,
LOOPS, METRICS, MODEL_WRAPPERS, MODELS,
OPTIM_WRAPPER_CONSTRUCTORS, PARAM_SCHEDULERS,
from mmengine.runner import (BaseLoop, EpochBasedTrainLoop, IterBasedTrainLoop,
Runner, TestLoop, ValLoop)
RangiLyu
committed
from mmengine.runner.loops import _InfiniteDataloaderIterator
from mmengine.runner.priority import Priority, get_priority
from mmengine.utils import TORCH_VERSION, digit_version, is_list_of
class ToyModel(BaseModel):
def __init__(self, data_preprocessor=None):
super().__init__(data_preprocessor=data_preprocessor)
self.linear1 = nn.Linear(2, 2)
self.linear2 = nn.Linear(2, 1)
def forward(self, batch_inputs, labels, mode='tensor'):
labels = torch.stack(labels)
outputs = self.linear1(batch_inputs)
outputs = self.linear2(outputs)
if mode == 'tensor':
return outputs
elif mode == 'loss':
outputs = dict(loss=loss)
elif mode == 'predict':
@MODELS.register_module()
class ToyModel1(ToyModel):
def __init__(self):
super().__init__()
@MODELS.register_module()
class ToySyncBNModel(BaseModel):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 8, 2)
self.bn = nn.SyncBatchNorm(8)
def forward(self, batch_inputs, labels, mode='tensor'):
labels = torch.stack(labels)
outputs = self.conv(batch_inputs)
outputs = self.bn(outputs)
if mode == 'tensor':
return outputs
elif mode == 'loss':
loss = (labels - outputs).sum()
outputs = dict(loss=loss)
return outputs
elif mode == 'predict':
outputs = dict(log_vars=dict(a=1, b=0.5))
return outputs
@MODELS.register_module()
class ToyGANModel(BaseModel):
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def __init__(self):
super().__init__()
self.linear1 = nn.Linear(2, 1)
self.linear2 = nn.Linear(2, 1)
def forward(self, batch_inputs, labels, mode='tensor'):
labels = torch.stack(labels)
output1 = self.linear1(batch_inputs)
output2 = self.linear2(batch_inputs)
if mode == 'tensor':
return output1, output2
elif mode == 'loss':
loss1 = (labels - output1).sum()
loss2 = (labels - output2).sum()
outputs = dict(linear1=loss1, linear2=loss2)
return outputs
elif mode == 'predict':
return output1, output2
def train_step(self, data, optim_wrapper):
batch_inputs, batch_labels = self.data_preprocessor(data)
loss = self(batch_inputs, batch_labels, mode='loss')
optim_wrapper['linear1'].update_params(loss['linear1'])
optim_wrapper['linear2'].update_params(loss['linear2'])
return loss
@MODEL_WRAPPERS.register_module()
class CustomModelWrapper(nn.Module):
def __init__(self, module):
self.model = module
@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
class ToyMultipleOptimizerConstructor:
def __init__(self, optim_wrapper_cfg, paramwise_cfg=None):
if not isinstance(optim_wrapper_cfg, dict):
raise TypeError('optimizer_cfg should be a dict',
assert paramwise_cfg is None, (
'parawise_cfg should be set in each optimizer separately')
self.optim_wrapper_cfg = optim_wrapper_cfg
for key, cfg in self.optim_wrapper_cfg.items():
_cfg = cfg.copy()
paramwise_cfg_ = _cfg.pop('paramwise_cfg', None)
self.constructors[key] = DefaultOptimWrapperConstructor(
def __call__(self, model: nn.Module) -> OptimWrapperDict:
optimizers = {}
while hasattr(model, 'module'):
model = model.module
for key, constructor in self.constructors.items():
module = getattr(model, key)
optimizers[key] = constructor(module)
@DATASETS.register_module()
class ToyDataset(Dataset):
METAINFO = dict() # type: ignore
data = torch.randn(12, 2)
label = torch.ones(12)
@property
def metainfo(self):
return self.METAINFO
return dict(inputs=self.data[index], data_sample=self.label[index])
@DATASETS.register_module()
class ToyDatasetNoMeta(Dataset):
data = torch.randn(12, 2)
label = torch.ones(12)
def __len__(self):
return self.data.size(0)
def __getitem__(self, index):
return dict(inputs=self.data[index], data_sample=self.label[index])
@METRICS.register_module()
class ToyMetric1(BaseMetric):
def __init__(self, collect_device='cpu', dummy_metrics=None):
super().__init__(collect_device=collect_device)
self.dummy_metrics = dummy_metrics
def process(self, data_samples, predictions):
result = {'acc': 1}
self.results.append(result)
def compute_metrics(self, results):
return dict(acc=1)
@METRICS.register_module()
class ToyMetric2(BaseMetric):
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
def __init__(self, collect_device='cpu', dummy_metrics=None):
super().__init__(collect_device=collect_device)
self.dummy_metrics = dummy_metrics
def process(self, data_samples, predictions):
result = {'acc': 1}
self.results.append(result)
def compute_metrics(self, results):
return dict(acc=1)
@HOOKS.register_module()
class ToyHook(Hook):
priority = 'Lowest'
def before_train_epoch(self, runner):
pass
@HOOKS.register_module()
class ToyHook2(Hook):
priority = 'Lowest'
def after_train_epoch(self, runner):
pass
@LOOPS.register_module()
class CustomTrainLoop(BaseLoop):
def __init__(self, runner, dataloader, max_epochs):
super().__init__(runner, dataloader)
self._max_epochs = max_epochs
def run(self) -> None:
pass
@LOOPS.register_module()
class CustomValLoop(BaseLoop):
RangiLyu
committed
def __init__(self, runner, dataloader, evaluator):
super().__init__(runner, dataloader)
self._runner = runner
if isinstance(evaluator, dict) or is_list_of(evaluator, dict):
self.evaluator = runner.build_evaluator(evaluator) # type: ignore
else:
self.evaluator = evaluator
def run(self) -> None:
pass
@LOOPS.register_module()
class CustomTestLoop(BaseLoop):
def __init__(self, runner, dataloader, evaluator):
super().__init__(runner, dataloader)
self._runner = runner
if isinstance(evaluator, dict) or is_list_of(evaluator, dict):
self.evaluator = runner.build_evaluator(evaluator) # type: ignore
else:
self.evaluator = evaluator
def run(self) -> None:
pass
class CustomLogProcessor(LogProcessor):
def __init__(self, window_size=10, by_epoch=True, custom_cfg=None):
self.window_size = window_size
self.by_epoch = by_epoch
self.custom_cfg = custom_cfg if custom_cfg else []
self._check_custom_cfg()
@RUNNERS.register_module()
class CustomRunner(Runner):
def __init__(self,
model,
work_dir,
train_dataloader=None,
val_dataloader=None,
test_dataloader=None,
train_cfg=None,
val_cfg=None,
test_cfg=None,
auto_scale_lr=None,
jbwang1997
committed
optim_wrapper=None,
param_scheduler=None,
val_evaluator=None,
test_evaluator=None,
default_hooks=None,
custom_hooks=None,
data_preprocessor=None,
load_from=None,
resume=False,
launcher='none',
env_cfg=dict(dist_cfg=dict(backend='nccl')),
log_processor=None,
log_level='INFO',
visualizer=None,
default_scope=None,
randomness=dict(seed=None),
experiment_name=None,
cfg=None):
pass
def setup_env(self, env_cfg):
pass
@EVALUATOR.register_module()
class ToyEvaluator(Evaluator):
def __init__(self, metrics):
super().__init__(metrics)
def collate_fn(data_batch):
return data_batch
class TestRunner(TestCase):
def setUp(self):
self.temp_dir = tempfile.mkdtemp()
epoch_based_cfg = dict(
train_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
num_workers=0),
val_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
num_workers=0),
test_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
auto_scale_lr=dict(base_batch_size=16, enable=False),
optim_wrapper=dict(
type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)),
param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]),
val_evaluator=dict(type='ToyMetric1'),
test_evaluator=dict(type='ToyMetric1'),
RangiLyu
committed
train_cfg=dict(
by_epoch=True, max_epochs=3, val_interval=1, val_begin=1),
val_cfg=dict(),
test_cfg=dict(),
custom_hooks=[],
default_hooks=dict(
runtime_info=dict(type='RuntimeInfoHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(
type='CheckpointHook', interval=1, by_epoch=True),
sampler_seed=dict(type='DistSamplerSeedHook')),
data_preprocessor=None,
launcher='none',
env_cfg=dict(dist_cfg=dict(backend='nccl')),
)
self.epoch_based_cfg = Config(epoch_based_cfg)
self.iter_based_cfg = copy.deepcopy(self.epoch_based_cfg)
self.iter_based_cfg.train_dataloader = dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='InfiniteSampler', shuffle=True),
batch_size=3,
num_workers=0)
self.iter_based_cfg.train_cfg = dict(by_epoch=False, max_iters=12)
self.iter_based_cfg.default_hooks = dict(
runtime_info=dict(type='RuntimeInfoHook'),
logger=dict(type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=1, by_epoch=False),
sampler_seed=dict(type='DistSamplerSeedHook'))
shutil.rmtree(self.temp_dir)
def test_init(self):
# 1. test arguments
# 1.1 train_dataloader, train_cfg, optimizer and param_scheduler
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('train_cfg')
with self.assertRaisesRegex(ValueError, 'either all None or not None'):
Runner(**cfg)
# all of training related configs are None and param_scheduler should
# also be None
cfg.experiment_name = 'test_init2'
cfg.pop('param_scheduler')
runner = Runner(**cfg)
self.assertIsInstance(runner, Runner)
# all of training related configs are not None
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_init3'
runner = Runner(**cfg)
self.assertIsInstance(runner, Runner)
# all of training related configs are not None and param_scheduler
# can be None
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_init4'
cfg.pop('param_scheduler')
runner = Runner(**cfg)
self.assertIsInstance(runner, Runner)
self.assertEqual(runner.param_schedulers, None)
# param_scheduler should be None when optimizer is None
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_init5'
cfg.pop('train_cfg')
cfg.pop('train_dataloader')
with self.assertRaisesRegex(ValueError, 'should be None'):
runner = Runner(**cfg)
# 1.2 val_dataloader, val_evaluator, val_cfg
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('val_cfg')
with self.assertRaisesRegex(ValueError, 'either all None or not None'):
Runner(**cfg)
cfg.pop('val_dataloader')
cfg.pop('val_evaluator')
runner = Runner(**cfg)
self.assertIsInstance(runner, Runner)
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = Runner(**cfg)
self.assertIsInstance(runner, Runner)
# 1.3 test_dataloader, test_evaluator and test_cfg
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('test_cfg')
with self.assertRaisesRegex(ValueError, 'either all None or not None'):
runner = Runner(**cfg)
cfg.pop('test_dataloader')
cfg.pop('test_evaluator')
runner = Runner(**cfg)
self.assertIsInstance(runner, Runner)
# 1.4 test env params
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = Runner(**cfg)
self.assertFalse(runner.distributed)
self.assertFalse(runner.deterministic)
# they are all not specified
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = Runner(**cfg)
self.assertIsInstance(runner.logger, MMLogger)
self.assertIsInstance(runner.message_hub, MessageHub)
self.assertIsInstance(runner.visualizer, Visualizer)
# they are all specified
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_init13'
cfg.log_level = 'INFO'
runner = Runner(**cfg)
self.assertIsInstance(runner.logger, MMLogger)
self.assertIsInstance(runner.message_hub, MessageHub)
self.assertIsInstance(runner.visualizer, Visualizer)
assert runner.distributed is False
assert runner.seed is not None
assert runner.work_dir == self.temp_dir
# 2 model should be initialized
self.assertIsInstance(runner.model,
(nn.Module, DistributedDataParallel))
self.assertEqual(runner.model_name, 'ToyModel')
# 3. test lazy initialization
self.assertIsInstance(runner._train_dataloader, dict)
self.assertIsInstance(runner._val_dataloader, dict)
self.assertIsInstance(runner._test_dataloader, dict)
self.assertIsInstance(runner.optim_wrapper, dict)
self.assertIsInstance(runner.param_schedulers, dict)
# After calling runner.train(),
# train_dataloader and val_loader should be initialized but
# test_dataloader should also be dict
self.assertIsInstance(runner._train_loop, BaseLoop)
self.assertIsInstance(runner.train_dataloader, DataLoader)
self.assertIsInstance(runner.optim_wrapper, OptimWrapper)
self.assertIsInstance(runner.param_schedulers[0], MultiStepLR)
self.assertIsInstance(runner._val_loop, BaseLoop)
self.assertIsInstance(runner._val_loop.dataloader, DataLoader)
self.assertIsInstance(runner._val_loop.evaluator, Evaluator)
# After calling runner.test(), test_dataloader should be initialized
self.assertIsInstance(runner._test_loop, dict)
self.assertIsInstance(runner._test_loop, BaseLoop)
self.assertIsInstance(runner._test_loop.dataloader, DataLoader)
self.assertIsInstance(runner._test_loop.evaluator, Evaluator)
# 4. initialize runner with objects rather than config
train_dataloader = DataLoader(ToyDataset(), collate_fn=collate_fn)
val_dataloader = DataLoader(ToyDataset(), collate_fn=collate_fn)
test_dataloader = DataLoader(ToyDataset(), collate_fn=collate_fn)
RangiLyu
committed
train_cfg=dict(
by_epoch=True, max_epochs=3, val_interval=1, val_begin=1),
optim_wrapper=optim_wrapper,
param_scheduler=MultiStepLR(optim_wrapper, milestones=[1, 2]),
RangiLyu
committed
val_cfg=dict(),
test_cfg=dict(),
test_dataloader=test_dataloader,
custom_hooks=[toy_hook2],
experiment_name='test_init14')
# 5. Test building multiple runners
if torch.cuda.is_available():
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_init15'
cfg.launcher = 'pytorch'
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29600'
os.environ['RANK'] = '0'
os.environ['WORLD_SIZE'] = '1'
os.environ['LOCAL_RANK'] = '0'
runner = Runner(**cfg)
cfg.experiment_name = 'test_init16'
runner = Runner(**cfg)
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
# 6.1 Test initializing with empty scheduler.
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_init17'
cfg.param_scheduler = None
runner = Runner(**cfg)
self.assertIsNone(runner.param_schedulers)
# 6.2 Test initializing single scheduler.
cfg.experiment_name = 'test_init18'
cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2])
Runner(**cfg)
# 6.3 Test initializing list of scheduler.
cfg.param_scheduler = [
dict(type='MultiStepLR', milestones=[1, 2]),
dict(type='MultiStepLR', milestones=[2, 3])
]
cfg.experiment_name = 'test_init19'
Runner(**cfg)
# 6.4 Test initializing 2 schedulers for 2 optimizers.
cfg.param_scheduler = dict(
linear1=dict(type='MultiStepLR', milestones=[1, 2]),
linear2=dict(type='MultiStepLR', milestones=[1, 2]),
)
cfg.experiment_name = 'test_init20'
Runner(**cfg)
# 6.5 Test initializing 2 schedulers for 2 optimizers.
cfg.param_scheduler = dict(
linear1=[dict(type='MultiStepLR', milestones=[1, 2])],
linear2=[dict(type='MultiStepLR', milestones=[1, 2])],
)
cfg.experiment_name = 'test_init21'
Runner(**cfg)
# 6.6 Test initializing with `_ParameterScheduler`.
optimizer = SGD(nn.Linear(1, 1).parameters(), lr=0.1)
cfg.param_scheduler = MultiStepLR(
milestones=[1, 2], optimizer=optimizer)
cfg.experiment_name = 'test_init22'
Runner(**cfg)
# 6.7 Test initializing with list of `_ParameterScheduler`.
cfg.param_scheduler = [
MultiStepLR(milestones=[1, 2], optimizer=optimizer)
]
cfg.experiment_name = 'test_init23'
Runner(**cfg)
# 6.8 Test initializing with 2 `_ParameterScheduler` for 2 optimizers.
cfg.param_scheduler = dict(
linear1=MultiStepLR(milestones=[1, 2], optimizer=optimizer),
linear2=MultiStepLR(milestones=[1, 2], optimizer=optimizer))
cfg.experiment_name = 'test_init24'
Runner(**cfg)
# 6.9 Test initializing with 2 list of `_ParameterScheduler` for 2
# optimizers.
cfg.param_scheduler = dict(
linear1=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)],
linear2=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)])
cfg.experiment_name = 'test_init25'
Runner(**cfg)
# 6.10 Test initializing with error type scheduler.
cfg.param_scheduler = dict(linear1='error_type')
cfg.experiment_name = 'test_init26'
with self.assertRaisesRegex(AssertionError, 'Each value of'):
Runner(**cfg)
cfg.param_scheduler = 'error_type'
cfg.experiment_name = 'test_init27'
with self.assertRaisesRegex(TypeError,
'`param_scheduler` should be a'):
Runner(**cfg)
def test_dump_config(self):
# dump config from dict.
cfg = copy.deepcopy(self.epoch_based_cfg)
for idx, cfg in enumerate((cfg, cfg._cfg_dict)):
cfg.experiment_name = f'test_dump{idx}'
runner = Runner.from_cfg(cfg=cfg)
assert osp.exists(
osp.join(runner.work_dir, f'{runner.timestamp}.py'))
# dump config from file.
with tempfile.TemporaryDirectory() as temp_config_dir:
temp_config_file = tempfile.NamedTemporaryFile(
dir=temp_config_dir, suffix='.py')
file_cfg = Config(
self.epoch_based_cfg._cfg_dict,
filename=temp_config_file.name)
file_cfg.experiment_name = f'test_dump2{idx}'
runner = Runner.from_cfg(cfg=file_cfg)
assert osp.exists(
osp.join(runner.work_dir,
osp.basename(temp_config_file.name)))
def test_from_cfg(self):
runner = Runner.from_cfg(cfg=self.epoch_based_cfg)
def test_build_logger(self):
self.epoch_based_cfg.experiment_name = 'test_build_logger1'
runner = Runner.from_cfg(self.epoch_based_cfg)
self.assertIsInstance(runner.logger, MMLogger)
self.assertEqual(runner.experiment_name, runner.logger.instance_name)
# input is a dict
logger = runner.build_logger(name='test_build_logger2')
self.assertIsInstance(logger, MMLogger)
self.assertEqual(logger.instance_name, 'test_build_logger2')
# input is a dict but does not contain name key
runner._experiment_name = 'test_build_logger3'
logger = runner.build_logger()
self.assertIsInstance(logger, MMLogger)
self.assertEqual(logger.instance_name, 'test_build_logger3')
self.epoch_based_cfg.experiment_name = 'test_build_message_hub1'
runner = Runner.from_cfg(self.epoch_based_cfg)
self.assertIsInstance(runner.message_hub, MessageHub)
self.assertEqual(runner.message_hub.instance_name,
runner.experiment_name)
# input is a dict
message_hub_cfg = dict(name='test_build_message_hub2')
message_hub = runner.build_message_hub(message_hub_cfg)
self.assertIsInstance(message_hub, MessageHub)
self.assertEqual(message_hub.instance_name, 'test_build_message_hub2')
# input is a dict but does not contain name key
runner._experiment_name = 'test_build_message_hub3'
message_hub_cfg = dict()
message_hub = runner.build_message_hub(message_hub_cfg)
self.assertIsInstance(message_hub, MessageHub)
self.assertEqual(message_hub.instance_name, 'test_build_message_hub3')
# input is not a valid type
with self.assertRaisesRegex(TypeError, 'message_hub should be'):
runner.build_message_hub('invalid-type')
def test_build_visualizer(self):
self.epoch_based_cfg.experiment_name = 'test_build_visualizer1'
runner = Runner.from_cfg(self.epoch_based_cfg)
self.assertIsInstance(runner.visualizer, Visualizer)
self.assertEqual(runner.experiment_name,
runner.visualizer.instance_name)
id(runner.build_visualizer(runner.visualizer)),
id(runner.visualizer))
visualizer_cfg = dict(type='Visualizer', name='test_build_visualizer2')
visualizer = runner.build_visualizer(visualizer_cfg)
self.assertIsInstance(visualizer, Visualizer)
self.assertEqual(visualizer.instance_name, 'test_build_visualizer2')
# input is a dict but does not contain name key
runner._experiment_name = 'test_build_visualizer3'
visualizer_cfg = None
visualizer = runner.build_visualizer(visualizer_cfg)
self.assertIsInstance(visualizer, Visualizer)
self.assertEqual(visualizer.instance_name, 'test_build_visualizer3')
with self.assertRaisesRegex(TypeError, 'visualizer should be'):
runner.build_visualizer('invalid-type')
def test_default_scope(self):
TOY_SCHEDULERS = Registry(
'parameter scheduler', parent=PARAM_SCHEDULERS, scope='toy')
@TOY_SCHEDULERS.register_module()
class ToyScheduler(MultiStepLR):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.epoch_based_cfg.param_scheduler = dict(
self.epoch_based_cfg.default_scope = 'toy'
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_default_scope'
runner = Runner.from_cfg(cfg)
self.assertIsInstance(runner.param_schedulers[0], ToyScheduler)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_build_model'
runner = Runner.from_cfg(cfg)
self.assertIsInstance(runner.model, ToyModel)
self.assertIsInstance(runner.model.data_preprocessor,
BaseDataPreprocessor)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_data_preprocessor'
cfg.data_preprocessor = dict(type='ImgDataPreprocessor')
runner = Runner.from_cfg(cfg)
# data_preprocessor is passed to used if no `data_preprocessor`
# in model config.
self.assertIsInstance(runner.model.data_preprocessor,
ImgDataPreprocessor)
# input should be a nn.Module object or dict
with self.assertRaisesRegex(TypeError, 'model should be'):
runner.build_model('invalid-type')
# input is a nn.Module object
_model = ToyModel1()
model = runner.build_model(_model)
self.assertEqual(id(model), id(_model))
# input is a dict
model = runner.build_model(dict(type='ToyModel1'))
self.assertIsInstance(model, ToyModel1)
# revert sync batchnorm
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_revert_syncbn'
cfg.model = dict(type='ToySyncBNModel')
runner = Runner.from_cfg(cfg)
self.assertIsInstance(runner.model, BaseModel)
assert not isinstance(runner.model.bn, nn.SyncBatchNorm)
# custom model wrapper
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_wrap_model'
cfg.model_wrapper_cfg = dict(type='CustomModelWrapper')
self.assertIsInstance(runner.model, BaseModel)
if torch.cuda.is_available():
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29515'
os.environ['RANK'] = str(0)
os.environ['WORLD_SIZE'] = str(1)
cfg.launcher = 'pytorch'
cfg.experiment_name = 'test_wrap_model1'
runner = Runner.from_cfg(cfg)
self.assertIsInstance(runner.model, CustomModelWrapper)
def test_scale_lr(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_scale_lr'
runner = Runner.from_cfg(cfg)
# When no base_batch_size in auto_scale_lr, an
auto_scale_lr = dict(enable=True)
optim_wrapper = OptimWrapper(SGD(runner.model.parameters(), lr=0.01))
with self.assertRaises(AssertionError):
runner.scale_lr(optim_wrapper, auto_scale_lr)
# When auto_scale_lr is None or enable is False, the lr will
auto_scale_lr = dict(base_batch_size=16, enable=False)
optim_wrapper = OptimWrapper(SGD(runner.model.parameters(), lr=0.01))
runner.scale_lr(optim_wrapper)
self.assertEqual(optim_wrapper.optimizer.param_groups[0]['lr'], 0.01)
runner.scale_lr(optim_wrapper, auto_scale_lr)
self.assertEqual(optim_wrapper.optimizer.param_groups[0]['lr'], 0.01)
# When auto_scale_lr is correct and enable is True, the lr will
auto_scale_lr = dict(base_batch_size=16, enable=True)
real_bs = runner.world_size * cfg.train_dataloader['batch_size']
optim_wrapper = OptimWrapper(SGD(runner.model.parameters(), lr=0.01))
runner.scale_lr(optim_wrapper, auto_scale_lr)
self.assertEqual(optim_wrapper.optimizer.param_groups[0]['lr'],
0.01 * (real_bs / 16))
# Test when optim_wrapper is an OptimWrapperDict
optim_wrapper = OptimWrapper(SGD(runner.model.parameters(), lr=0.01))
wrapper_dict = OptimWrapperDict(wrapper=optim_wrapper)
runner.scale_lr(wrapper_dict, auto_scale_lr)
scaled_lr = wrapper_dict['wrapper'].optimizer.param_groups[0]['lr']
self.assertEqual(scaled_lr, 0.01 * (real_bs / 16))
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_build_optim_wrapper'
# input should be an Optimizer object or dict
with self.assertRaisesRegex(TypeError, 'optimizer wrapper should be'):
runner.build_optim_wrapper('invalid-type')
# 1. test one optimizer
# 1.1 input is an Optimizer object
optimizer = SGD(runner.model.parameters(), lr=0.01)
optim_wrapper = OptimWrapper(optimizer)
optim_wrapper = runner.build_optim_wrapper(optim_wrapper)
self.assertEqual(id(optimizer), id(optim_wrapper.optimizer))
optim_wrapper = runner.build_optim_wrapper(
dict(type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)))
self.assertIsInstance(optim_wrapper, OptimWrapper)
# 1.3 use default OptimWrapper type.
optim_wrapper = runner.build_optim_wrapper(
dict(optimizer=dict(type='SGD', lr=0.01)))
self.assertIsInstance(optim_wrapper, OptimWrapper)
# 2. test multiple optmizers
# 2.1 input is a dict which contains multiple optimizer objects
optimizer1 = SGD(runner.model.linear1.parameters(), lr=0.01)
optim_wrapper1 = OptimWrapper(optimizer1)
optimizer2 = Adam(runner.model.linear2.parameters(), lr=0.02)
optim_wrapper2 = OptimWrapper(optimizer2)
optim_wrapper_cfg = dict(key1=optim_wrapper1, key2=optim_wrapper2)
optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg)
self.assertIsInstance(optim_wrapper, OptimWrapperDict)
self.assertIsInstance(optim_wrapper['key1'].optimizer, SGD)
self.assertIsInstance(optim_wrapper['key2'].optimizer, Adam)
# 2.2 each item mush be an optimizer object when "type" and
# "constructor" are not in optimizer
optimizer1 = SGD(runner.model.linear1.parameters(), lr=0.01)
optim_wrapper1 = OptimWrapper(optimizer1)
optim_wrapper2 = dict(
type='OptimWrapper', optimizer=dict(type='Adam', lr=0.01))
optim_cfg = dict(key1=optim_wrapper1, key2=optim_wrapper2)
with self.assertRaisesRegex(ValueError,
'each item mush be an optimizer object'):
# 2.3 input is a dict which contains multiple configs
optim_wrapper_cfg = dict(
linear1=dict(
type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)),
linear2=dict(
type='OptimWrapper', optimizer=dict(type='Adam', lr=0.02)),
constructor='ToyMultipleOptimizerConstructor')
optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg)
self.assertIsInstance(optim_wrapper, OptimWrapperDict)
self.assertIsInstance(optim_wrapper['linear1'].optimizer, SGD)
self.assertIsInstance(optim_wrapper['linear2'].optimizer, Adam)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.experiment_name = 'test_build_param_scheduler'
runner = Runner.from_cfg(cfg)
# `build_optim_wrapper` should be called before
# `build_param_scheduler`
cfg = dict(type='MultiStepLR', milestones=[1, 2])
key1=dict(
type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)),
key2=dict(
type='OptimWrapper', optimizer=dict(type='Adam', lr=0.02)),
with self.assertRaisesRegex(AssertionError, 'should be called before'):
runner.optim_wrapper = runner.build_optim_wrapper(
dict(type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)))
param_schedulers = runner.build_param_scheduler(cfg)
self.assertIsInstance(param_schedulers, list)
self.assertEqual(len(param_schedulers), 1)
self.assertIsInstance(param_schedulers[0], MultiStepLR)
# 1. test one optimizer and one parameter scheduler
# 1.1 input is a ParamScheduler object
param_scheduler = MultiStepLR(runner.optim_wrapper, milestones=[1, 2])
param_schedulers = runner.build_param_scheduler(param_scheduler)
self.assertEqual(len(param_schedulers), 1)
self.assertEqual(id(param_schedulers[0]), id(param_scheduler))
# 1.2 input is a dict
param_schedulers = runner.build_param_scheduler(param_scheduler)
self.assertEqual(len(param_schedulers), 1)
self.assertIsInstance(param_schedulers[0], MultiStepLR)
# 2. test one optimizer and list of parameter schedulers
# 2.1 input is a list of dict
cfg = [
dict(type='MultiStepLR', milestones=[1, 2]),
dict(type='StepLR', step_size=1)
]
param_schedulers = runner.build_param_scheduler(cfg)
self.assertEqual(len(param_schedulers), 2)
self.assertIsInstance(param_schedulers[0], MultiStepLR)
self.assertIsInstance(param_schedulers[1], StepLR)
# 2.2 input is a list and some items are ParamScheduler objects
cfg = [param_scheduler, dict(type='StepLR', step_size=1)]
param_schedulers = runner.build_param_scheduler(cfg)
self.assertEqual(len(param_schedulers), 2)
self.assertIsInstance(param_schedulers[0], MultiStepLR)
self.assertIsInstance(param_schedulers[1], StepLR)
# 3. test multiple optimizers and list of parameter schedulers
optimizer1 = SGD(runner.model.linear1.parameters(), lr=0.01)
optim_wrapper1 = OptimWrapper(optimizer1)
optimizer2 = Adam(runner.model.linear2.parameters(), lr=0.02)
optim_wrapper2 = OptimWrapper(optimizer2)
optim_wrapper_cfg = dict(key1=optim_wrapper1, key2=optim_wrapper2)
runner.optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg)
cfg = [
dict(type='MultiStepLR', milestones=[1, 2]),
dict(type='StepLR', step_size=1)
]
param_schedulers = runner.build_param_scheduler(cfg)
print(param_schedulers)
self.assertIsInstance(param_schedulers, dict)
self.assertEqual(len(param_schedulers), 2)
self.assertEqual(len(param_schedulers['key1']), 2)
self.assertEqual(len(param_schedulers['key2']), 2)