Skip to content
Snippets Groups Projects
localoperator.py 41.7 KiB
Newer Older
Dominic Kempf's avatar
Dominic Kempf committed
from __future__ import absolute_import
René Heß's avatar
René Heß committed
from os.path import splitext
Dominic Kempf's avatar
Dominic Kempf committed

import logging

René Heß's avatar
René Heß committed
import numpy as np

from dune.perftool.options import (get_form_option,
                                   get_option,
                                   option_switch)
from dune.perftool.generation import (backend,
                                      base_class,
                                      class_basename,
                                      class_member,
                                      constructor_parameter,
                                      dump_accumulate_timer,
Dominic Kempf's avatar
Dominic Kempf committed
                                      function_mangler,
                                      get_global_context_value,
                                      global_context,
                                      include_file,
                                      initializer_list,
                                      post_include,
                                      retrieve_cache_items,
                                      template_parameter,
                                      )
from dune.perftool.cgen.clazz import (AccessModifier,
                                      BaseClass,
                                      ClassMember,
                                      )
from dune.perftool.ufl.modified_terminals import Restriction

import dune.perftool.loopy.mangler

from pymbolic.primitives import Variable
import pymbolic.primitives as prim
from pytools import Record, ImmutableRecord
Dominic Kempf's avatar
Dominic Kempf committed

import ufl.classes as uc
import loopy as lp
Dominic Kempf's avatar
Dominic Kempf committed

Dominic Kempf's avatar
Dominic Kempf committed
@template_parameter(classtag="operator")
def lop_template_ansatz_gfs():
    name = "GFSU"
    constructor_parameter("const {}&".format(name), name_ansatz_gfs_constructor_param(), classtag="operator")
    return name


def name_ansatz_gfs_constructor_param():
    return "gfsu"
Dominic Kempf's avatar
Dominic Kempf committed
@template_parameter(classtag="operator")
def lop_template_test_gfs():
    name = "GFSV"
    constructor_parameter("const {}&".format(name), name_test_gfs_constructor_param(), classtag="operator")
    return name


def name_test_gfs_constructor_param():
    return "gfsv"
Dominic Kempf's avatar
Dominic Kempf committed
@template_parameter(classtag="operator")
def lop_template_range_field():
    return "RF"


Dominic Kempf's avatar
Dominic Kempf committed
@class_member(classtag="operator")
def lop_domain_field(name):
    # TODO: Rethink for not Galerkin Method
    gfs = lop_template_ansatz_gfs()
    return "using {} = typename {}::Traits::GridView::ctype;".format(name, gfs)


def name_domain_field():
    name = "DF"
    lop_domain_field(name)
    return name


    from ufl.classes import Argument, Coefficient
    if isinstance(ma.argexpr, Argument):
        if ma.argexpr.number() == 0:
            return lop_template_test_gfs()
        if ma.argexpr.number() == 1:
            return lop_template_ansatz_gfs()
    if isinstance(ma.argexpr, Coefficient):
        # Index 0 is reserved for trialfunction, index 1 is reserved for jacobian apply function
        assert ma.argexpr.count() < 2
        return lop_template_ansatz_gfs()
    assert False


def name_initree_constructor_param():
    return "iniParams"


Dominic Kempf's avatar
Dominic Kempf committed
@class_member(classtag="operator")
def define_initree(name):
    param_name = name_initree_constructor_param()
    include_file('dune/common/parametertree.hh', filetag="operatorfile")
    constructor_parameter("const Dune::ParameterTree&", param_name, classtag="operator")
    initializer_list(name, [param_name], classtag="operator")
    return "const Dune::ParameterTree& {};".format(name)


Dominic Kempf's avatar
Dominic Kempf committed
@class_member(classtag="operator")
def _enum_pattern(which):
    return "enum {{ doPattern{} = true }};".format(which)


def enum_pattern():
    from dune.perftool.generation import get_global_context_value
    integral_type = get_global_context_value("integral_type")
    from dune.perftool.pdelab.signatures import ufl_measure_to_pdelab_measure
    return _enum_pattern(ufl_measure_to_pdelab_measure(integral_type))


def _pattern_baseclass(measure):
    return base_class('Dune::PDELab::Full{}Pattern'.format(measure), classtag="operator")


def pattern_baseclass():
    from dune.perftool.generation import get_global_context_value
    integral_type = get_global_context_value("integral_type")
    from dune.perftool.pdelab.signatures import ufl_measure_to_pdelab_measure
    return _pattern_baseclass(ufl_measure_to_pdelab_measure(integral_type))


Dominic Kempf's avatar
Dominic Kempf committed
@class_member(classtag="operator")
def _enum_alpha(which):
    return "enum {{ doAlpha{} = true }};".format(which)
Dominic Kempf's avatar
Dominic Kempf committed

def enum_alpha():
    from dune.perftool.generation import get_global_context_value
    integral_type = get_global_context_value("integral_type")
    from dune.perftool.pdelab.signatures import ufl_measure_to_pdelab_measure
    return _enum_alpha(ufl_measure_to_pdelab_measure(integral_type))


def name_initree_member():
    define_initree("_iniParams")
    return "_iniParams"

Dominic Kempf's avatar
Dominic Kempf committed
@class_basename(classtag="operator")
def localoperator_basename(form_ident):
    return get_form_option("classname", form_ident)
def name_gridfunction_member(coeff, restriction, diffOrder=0):
    # We reuse the grid function for volume integrals in skeleton integrals
    if restriction == Restriction.NEGATIVE:
        restriction = Restriction.NONE
    restr = "_n" if restriction == Restriction.POSITIVE else ""
    name = "local_gridfunction_coeff{}_diff{}{}".format(coeff.count(), diffOrder, restr)
    define_gridfunction_member(name, coeff, restriction, diffOrder)
    return name


def name_gridfunction_constructor_argument(coeff):
    _type = type_gridfunction_template_parameter(coeff)
    name = "gridfunction_coeff{}_".format(coeff.count())
    constructor_parameter("const {}&".format(_type), name, classtag="operator")
    return name


@class_member(classtag="operator")
def define_gridfunction_member(name, coeff, restriction, diffOrder):
    _type = type_gridfunction_template_parameter(coeff)
    param = name_gridfunction_constructor_argument(coeff)
    if diffOrder > 0:
        other = name_gridfunction_member(coeff, restriction, diffOrder - 1)
        init = "derivative({})".format(other)
        initializer_list(name, [init], classtag="operator")
        return "mutable decltype({}) {};".format(init, name)
        init = "localFunction({})".format(param)
        initializer_list(name, [init], classtag="operator")
        return "mutable typename {}::LocalFunction {};".format(_type, name)


@template_parameter(classtag="operator")
def type_gridfunction_template_parameter(coeff):
    return "GRIDFUNCTION_COEFF{}".format(coeff.count())
def class_type_from_cache(classtag):
    from dune.perftool.generation import retrieve_cache_items

    # get the basename
    basename = [i for i in retrieve_cache_items(condition="{} and basename".format(classtag))]
    assert len(basename) == 1
    basename = basename[0]

    # get the template parameters
    tparams = [i for i in retrieve_cache_items(condition="{} and template_param".format(classtag))]
    tparam_str = ''
    if len(tparams) > 0:
        tparam_str = '<{}>'.format(', '.join(t for t in tparams))

    return basename, basename + tparam_str

Dominic Kempf's avatar
Dominic Kempf committed

class AccumulationSpace(Record):
    def __init__(self,
                 lfs=None,
                 index=None,
                 restriction=None,
                 element=None,
                 ):
        Record.__init__(self,
                        lfs=lfs,
                        index=index,
                        restriction=restriction,
                        element=element,
                        )

    def get_args(self):
        if self.lfs is None:
            return ()
        else:
            return (self.lfs, self.index)

    def get_restriction(self):
        if self.restriction is None:
            return ()
        else:
            return (self.restriction,)


# TODO maybe move this onto the visitor as a helper function?
def determine_accumulation_space(info, number):
    if info is None:
        return AccumulationSpace()

    assert info is not None
    element = info.element
    subel = element
    from ufl import MixedElement
    if isinstance(element, MixedElement):
        subel = element.extract_component(info.element_index)[1]

    # And generate a local function space for it!
    from dune.perftool.pdelab.spaces import name_lfs, name_lfs_bound, lfs_iname
    lfs = name_lfs(element, info.restriction, info.element_index)
    from dune.perftool.generation import valuearg
    from loopy.types import NumpyType
    valuearg(lfs, dtype=NumpyType("str"))

    if get_form_option("blockstructured"):
Marcel Koch's avatar
Marcel Koch committed
        from dune.perftool.blockstructured.tools import micro_index_to_macro_index
        from dune.perftool.blockstructured.spaces import lfs_inames
        lfsi = micro_index_to_macro_index(subel, lfs_inames(subel, info.restriction, count=number)[0])
        from dune.perftool.pdelab.spaces import lfs_inames
        lfsi = Variable(lfs_iname(subel, info.restriction, count=number))
    # If the LFS is not yet a pymbolic expression, make it one
    from pymbolic.primitives import Expression
    if not isinstance(lfs, Expression):
        lfs = Variable(lfs)

Marcel Koch's avatar
Marcel Koch committed
    return AccumulationSpace(lfs=lfs,
                             index=lfsi,
                             restriction=info.restriction,
def boundary_predicates(expr, measure, subdomain_id):
    predicates = frozenset([])

    if subdomain_id not in ['everywhere', 'otherwise']:
        # We need to reconstruct the subdomain_data parameter of the measure
        # I am *totally* confused as to why this information is not at hand anyway,
        # but conversation with Martin pointed me to dolfin.fem.assembly where this
        # is done in preprocessing with the limitation of only one possible type of
        # modified measure per integral type.

        # Get the original form and inspect the present measures
        from dune.perftool.generation import get_global_context_value
        data = get_global_context_value("data")
        original_form = data.object_by_name[get_form_option("form")]

        sd = original_form.subdomain_data()
        assert len(sd) == 1
        subdomains, = list(sd.values())
        domain, = list(sd.keys())
        for k in list(subdomains.keys()):
            if subdomains[k] is None:
                    del subdomains[k]

        # Finally extract the original subdomain_data (which needs to be present!)
        assert measure in subdomains
        subdomain_data = subdomains[measure]

        from ufl.classes import Expr
        if isinstance(subdomain_data, Expr):
            visitor = get_visitor(measure, subdomain_id)
            cond = visitor(subdomain_data, do_predicates=True)
Dominic Kempf's avatar
Dominic Kempf committed
            raise NotImplementedError("Only UFL expressions allowed in subdomain_data right now.")
        predicates = predicates.union([prim.Comparison(cond, '==', subdomain_id)])
class PDELabAccumulationInfo(ImmutableRecord):
    def __init__(self,
                 element=None,
                 element_index=0,
                 restriction=None,
                 inames=(),
                 ):
        ImmutableRecord.__init__(self,
                                 element=element,
                                 element_index=element_index,
                                 restriction=restriction,
                                 inames=inames,
                                 )

    def __eq__(self, other):
        return type(self) == type(other) and self.element_index == other.element_index and self.restriction == other.restriction

    def __hash__(self):
        return (self.element_index, self.restriction)


def _list_infos(expr, number, visitor):
    from dune.perftool.ufl.modified_terminals import extract_modified_arguments
    ma = extract_modified_arguments(expr, argnumber=number)
    if len(ma) == 0:
        if number == 1:
            yield None
        return
    element = ma[0].argexpr.ufl_element()

    from dune.perftool.ufl.modified_terminals import Restriction
    if visitor.measure == "cell":
        restrictions = (Restriction.NONE,)
    elif visitor.measure == "exterior_facet":
        restrictions = (Restriction.NEGATIVE,)
    elif visitor.measure == "interior_facet":
        restrictions = (Restriction.NEGATIVE, Restriction.POSITIVE)
    for res in restrictions:
        for ei in range(element.value_size()):
            yield PDELabAccumulationInfo(element_index=ei, restriction=res)


def list_accumulation_infos(expr, visitor):
    testgen = _list_infos(expr, 0, visitor)
    trialgen = _list_infos(expr, 1, visitor)

    import itertools
    return itertools.product(testgen, trialgen)


def get_accumulation_info(expr, visitor):
    element = expr.ufl_element()
    leaf_element = element
    element_index = 0
    from ufl import MixedElement
    if isinstance(expr.ufl_element(), MixedElement):
        element_index = visitor.indices[0]
        leaf_element = element.extract_component(element_index)[1]

    restriction = visitor.restriction
    if visitor.measure == 'exterior_facet':
        from dune.perftool.pdelab.restriction import Restriction
        restriction = Restriction.NEGATIVE

    inames = visitor.interface.lfs_inames(leaf_element,
                                          restriction,
                                          expr.number()
                                          )

    return PDELabAccumulationInfo(element=expr.ufl_element(),
                                  element_index=element_index,
                                  restriction=restriction,
                                  inames=inames,
                                  )


def generate_accumulation_instruction(expr, visitor):
    # Collect the lfs and lfs indices for the accumulate call
    test_lfs = determine_accumulation_space(visitor.test_info, 0)

    # In the jacobian case, also determine the space for the ansatz space
    ansatz_lfs = determine_accumulation_space(visitor.trial_info, 1)
    # Collect the lfs and lfs indices for the accumulate call
    from dune.perftool.pdelab.argument import name_accumulation_variable
    accumvar = name_accumulation_variable(test_lfs.get_restriction() + ansatz_lfs.get_restriction())

    predicates = boundary_predicates(expr, visitor.measure, visitor.subdomain_id)

    rank = 1 if ansatz_lfs.lfs is None else 2

    from dune.perftool.pdelab.argument import PDELabAccumulationFunction
    from pymbolic.primitives import Call
    accexpr = Call(PDELabAccumulationFunction(accumvar, rank),
                   (test_lfs.get_args() + ansatz_lfs.get_args() + (expr,))
                   )
    from dune.perftool.generation import instruction
    from dune.perftool.options import option_switch
    quad_inames = visitor.interface.quadrature_inames()
    lfs_inames = frozenset(visitor.test_info.inames)
    if visitor.trial_info:
        lfs_inames = lfs_inames.union(visitor.trial_info.inames)
    instruction(assignees=(),
                expression=accexpr,
                forced_iname_deps=lfs_inames.union(frozenset(quad_inames)),
                forced_iname_deps_is_final=True,
                predicates=predicates
                )


def get_visitor(measure, subdomain_id):
    # Get a transformer instance for this kernel
    if get_form_option('sumfact'):
        from dune.perftool.sumfact import SumFactInterface
        interface = SumFactInterface()
    elif get_form_option('blockstructured'):
        from dune.perftool.blockstructured import BlockStructuredInterface
        interface = BlockStructuredInterface()
    else:
        from dune.perftool.pdelab import PDELabInterface
        interface = PDELabInterface()
    from dune.perftool.ufl.visitor import UFL2LoopyVisitor
    return UFL2LoopyVisitor(interface, measure, subdomain_id)


def visit_integral(integral):
    integrand = integral.integrand()
    measure = integral.integral_type()
    subdomain_id = integral.subdomain_id()
    visitor = get_visitor(measure, subdomain_id)
    visitor.accumulate(integrand)
Dominic Kempf's avatar
Dominic Kempf committed

    logger = logging.getLogger(__name__)

    # Visit all integrals once to collect information (dry-run)!
    logger.debug('generate_kernel: visit_integrals (dry run)')
    with global_context(dry_run=True):
        for integral in integrals:
            visit_integral(integral)

    # Now perform some checks on what should be done
    from dune.perftool.sumfact.vectorization import decide_vectorization_strategy
    logger.debug('generate_kernel: decide_vectorization_strategy')
    decide_vectorization_strategy()

    # Delete the cache contents and do the real thing!
    logger.debug('generate_kernel: visit_integrals (no dry run)')
    from dune.perftool.generation import delete_cache_items
    delete_cache_items("kernel_default")
    for integral in integrals:
        visit_integral(integral)
    knl = extract_kernel_from_cache("kernel_default")
    delete_cache_items("kernel_default")

    # Reset the quadrature degree
    from dune.perftool.sumfact.tabulation import set_quadrature_points
    set_quadrature_points(None)

    # Clean the cache from any data collected after the dry run
    delete_cache_items("dryrundata")
@backend(interface="generate_kernels_per_integral")
def generate_kernels_per_integral(integrals):
    yield generate_kernel(integrals)


def extract_kernel_from_cache(tag, wrap_in_cgen=True):
    # Now extract regular loopy kernel components
    from dune.perftool.loopy.target import DuneTarget
    domains = [i for i in retrieve_cache_items("{} and domain".format(tag))]

    if not domains:
        domains = ["{[stupid] : 0<=stupid<1}"]

    instructions = [i for i in retrieve_cache_items("{} and instruction".format(tag))]
    substrules = [i for i in retrieve_cache_items("{} and substrule".format(tag)) if i is not None]
    temporaries = {i.name: i for i in retrieve_cache_items("{} and temporary".format(tag))}
    arguments = [i for i in retrieve_cache_items("{} and argument".format(tag))]
    silenced = [l for l in retrieve_cache_items("{} and silenced_warning".format(tag))]
    transformations = [t for t in retrieve_cache_items("{} and transformation".format(tag))]
    # Construct an options object
    from loopy import Options
    opt = Options(ignore_boostable_into=True,
                  check_dep_resolution=False,
                  )
    # Find a name for the kernel
    if wrap_in_cgen:
        from dune.perftool.pdelab.signatures import kernel_name
        name = kernel_name()
    else:
        name = "constructor_kernel"

    # Create the kernel
Dominic Kempf's avatar
Dominic Kempf committed
    from loopy import make_kernel, preprocess_kernel
    kernel = make_kernel(domains,
                         instructions + substrules,
                         arguments,
                         temporary_variables=temporaries,
                         target=DuneTarget(),
                         options=opt,
                         silenced_warnings=silenced,
                         name=name,
    from loopy import make_reduction_inames_unique
    kernel = make_reduction_inames_unique(kernel)

    from dune.perftool.loopy.transformations.disjointgroups import make_groups_conflicting
    kernel = make_groups_conflicting(kernel)

    # Apply the transformations that were gathered during tree traversals
    for trafo in transformations:
        kernel = trafo[0](kernel, *trafo[1])

    # Precompute all the substrules
    for sr in kernel.substitutions:
        tmpname = "precompute_{}".format(sr)
        kernel = lp.precompute(kernel,
                               sr,
                               temporary_name=tmpname,
                               )
        # Vectorization strategies are actually very likely to eliminate the
        # precomputation temporary. To avoid the temporary elimination warning
        # we need to explicitly disable it.
        kernel = kernel.copy(silenced_warnings=kernel.silenced_warnings + ["temp_to_write({})".format(tmpname)])
Dominic Kempf's avatar
Dominic Kempf committed
    from dune.perftool.loopy import heuristic_duplication
Dominic Kempf's avatar
Dominic Kempf committed
    kernel = heuristic_duplication(kernel)

    # Maybe apply vectorization strategies
    if get_form_option("vectorization_quadloop"):
        if get_form_option("sumfact"):
Dominic Kempf's avatar
Dominic Kempf committed
            from dune.perftool.loopy.transformations.vectorize_quad import vectorize_quadrature_loop
            kernel = vectorize_quadrature_loop(kernel)
            raise NotImplementedError("Only vectorizing sumfactorized code right now!")
    # Now add the preambles to the kernel
    preambles = [(i, p) for i, p in enumerate(retrieve_cache_items("{} and preamble".format(tag)))]
    kernel = kernel.copy(preambles=preambles)

    # Remove inames that have become obsolete
    kernel = lp.remove_unused_inames(kernel)

    # Do the loopy preprocessing!
    kernel = preprocess_kernel(kernel)

    # *REALLY* ignore boostability. This is - so far - necessary due to a mystery bug.
    kernel = kernel.copy(instructions=[i.copy(boostable=False, boostable_into=frozenset()) for i in kernel.instructions])

Dominic Kempf's avatar
Dominic Kempf committed
    from dune.perftool.loopy.transformations.matchfma import match_fused_multiply_add
    kernel = match_fused_multiply_add(kernel)

    if wrap_in_cgen:
        # Wrap the kernel in something which can generate code
        from dune.perftool.pdelab.signatures import assembly_routine_signature
        signature = assembly_routine_signature()
        kernel = LoopyKernelMethod(signature, kernel)

Dominic Kempf's avatar
Dominic Kempf committed

def name_time_dumper_os():
    return "os"


def name_time_dumper_reset():
    return "reset"


def name_time_dumper_ident():
    return "ident"
@generator_factory(item_tags=("cached",), cache_key_generator=lambda **kw: None)
def name_example_kernel(name=None):
    return name


class TimerMethod(ClassMember):
    def __init__(self):
        os = name_time_dumper_os()
        reset = name_time_dumper_reset()
        ident = name_time_dumper_ident()
        knl = name_example_kernel()
        assert(knl is not None)
        content = ["template <typename Stream>",
                   "void dump_timers(Stream& {}, std::string {}, bool {})".format(os, ident, reset),
René Heß's avatar
René Heß committed
                   "{"]
        dump_timers = [i for i in retrieve_cache_items(condition='dump_timers')]
        content.extend(map(lambda x: '  ' + x, dump_timers))
        content.append("}")
        ClassMember.__init__(self, content)


class LoopyKernelMethod(ClassMember):
    def __init__(self, signature, kernel, add_timings=True, initializer_list=[]):
        from loopy import generate_body
        from cgen import LiteralLines, Block
Dominic Kempf's avatar
Dominic Kempf committed
        content = signature

        # Add initializer list if this is a constructor
        if initializer_list:
            content[-1] = content[-1] + " :"
            for init in initializer_list[:-1]:
                content.append(" " * 4 + init + ",")
            content.append(" " * 4 + initializer_list[-1])
Dominic Kempf's avatar
Dominic Kempf committed
        content.append('{')
        if kernel is not None:
            # Start timer
            if add_timings and get_option('instrumentation_level') >= 3:
                from dune.perftool.pdelab.signatures import assembler_routine_name
                timer_name = assembler_routine_name() + '_kernel'
                name_example_kernel(name=timer_name)
                post_include('HP_DECLARE_TIMER({});'.format(timer_name), filetag='operatorfile')
                content.append('  ' + 'HP_TIMER_START({});'.format(timer_name))
                dump_accumulate_timer(timer_name)

            if add_timings and get_option("instrumentation_level") >= 4:
                setuptimer = '{}_kernel_setup'.format(assembler_routine_name())
                post_include('HP_DECLARE_TIMER({});'.format(setuptimer), filetag='operatorfile')
                content.append('  HP_TIMER_START({});'.format(setuptimer))
Dominic Kempf's avatar
Dominic Kempf committed
                dump_accumulate_timer(setuptimer)

            # Add kernel preamble
            for i, p in kernel.preambles:
                content.append('  ' + p)

            # Add kernel body
            content.extend(l for l in generate_body(kernel).split('\n')[1:-1])

            # Stop timer
            if add_timings and get_option('instrumentation_level') >= 3:
                content.append('  ' + 'HP_TIMER_STOP({});'.format(timer_name))

Dominic Kempf's avatar
Dominic Kempf committed
        content.append('}')
        ClassMember.__init__(self, content)
Dominic Kempf's avatar
Dominic Kempf committed

Dominic Kempf's avatar
Dominic Kempf committed

def cgen_class_from_cache(tag, members=[]):
    from dune.perftool.generation import retrieve_cache_items

    # Generate the name by concatenating basename and template parameters
    basename, fullname = class_type_from_cache(tag)
    base_classes = [bc for bc in retrieve_cache_items('{} and baseclass'.format(tag))]
    constructor_params = [bc for bc in retrieve_cache_items('{} and constructor_param'.format(tag))]
    il = [i for i in retrieve_cache_items('{} and initializer'.format(tag))]
    pm = [m for m in retrieve_cache_items('{} and member'.format(tag))]
    tparams = [i for i in retrieve_cache_items('{} and template_param'.format(tag))]
    # Construct the constructor
    constructor_knl = extract_kernel_from_cache(tag, wrap_in_cgen=False)
    from dune.perftool.loopy.target import DuneTarget
    constructor_knl = constructor_knl.copy(target=DuneTarget(declare_temporaries=False))
    signature = "{}({})".format(basename, ", ".join(next(iter(p.generate(with_semicolon=False))) for p in constructor_params))
    constructor = LoopyKernelMethod([signature], constructor_knl, add_timings=False, initializer_list=il)
    # Take any temporary declarations from the kernel and make them class members
    target = DuneTarget()
    from loopy.codegen import CodeGenerationState
    codegen_state = CodeGenerationState(kernel=constructor_knl,
                                        implemented_data_info=None,
                                        implemented_domain=None,
                                        implemented_predicates=frozenset(),
                                        seen_dtypes=frozenset(),
                                        seen_functions=frozenset(),
                                        seen_atomic_dtypes=frozenset(),
                                        var_subst_map={},
                                        allow_complex=False,
                                        is_generating_device_code=True,
                                        )
    decls = [cgen.Line("\n  " + next(iter(d.generate()))) for d in target.get_device_ast_builder().get_temporary_decls(codegen_state, 0)]
    from dune.perftool.cgen import Class
    return Class(basename, base_classes=base_classes, members=[constructor] + members + pm + decls, tparam_decls=tparams)
René Heß's avatar
René Heß committed
def local_operator_default_settings(operator, form):
    # Manage includes and base classes that we always need
    include_file('dune/pdelab/gridfunctionspace/gridfunctionspace.hh', filetag="operatorfile")
    include_file('dune/pdelab/localoperator/idefault.hh', filetag="operatorfile")
    include_file('dune/pdelab/localoperator/flags.hh', filetag="operatorfile")
    include_file('dune/pdelab/localoperator/pattern.hh', filetag="operatorfile")
    post_include("#pragma GCC diagnostic push", filetag="operatorfile")
    post_include("#pragma GCC diagnostic ignored \"-Wsign-compare\"", filetag="operatorfile")
    post_include("#pragma GCC diagnostic ignored \"-Wunused-variable\"", filetag="operatorfile")
    post_include("#pragma GCC diagnostic ignored \"-Wunused-but-set-variable\"", filetag="operatorfile")
    end_of_file("#pragma GCC diagnostic pop", filetag="operatorfile")

    # Trigger this one once early on to assure that template
    # parameters are set in the right order
    localoperator_basename(operator)
    lop_template_ansatz_gfs()
    lop_template_test_gfs()
    lop_template_range_field()
    # Make sure there is always the same constructor arguments, even if some of them are
    # not strictly needed. Also ensure the order.
    # Iterate over the needed grid functions in correct order
    for c in sorted(filter(lambda c: c.count() > 2, form.coefficients()), key=lambda c: c.count()):
        name_gridfunction_constructor_argument(c)
    # Set some options!
    from dune.perftool.pdelab.driver import isQuadrilateral
    if isQuadrilateral(form.arguments()[0].ufl_element().cell()):
        from dune.perftool.options import set_form_option
        # For Yasp Grids the jacobian of the transformation is diagonal and constant on each cell
        set_form_option('diagonal_transformation_matrix', True)
        set_form_option('constant_transformation_matrix', True)

    # Add right base classes for stationary/instationary operators
    base_class('Dune::PDELab::LocalOperatorDefaultFlags', classtag="operator")
    from dune.perftool.pdelab.driver import is_stationary
    if not is_stationary():
        rf = lop_template_range_field()
        base_class('Dune::PDELab::InstationaryLocalOperatorDefaultMethods<{}>'
                   .format(rf), classtag="operator")
Dominic Kempf's avatar
Dominic Kempf committed

René Heß's avatar
René Heß committed
def generate_residual_kernels(form):
    logger = logging.getLogger(__name__)
    with global_context(form_type='residual'):
René Heß's avatar
René Heß committed
        operator_kernels = {}

        # Generate the necessary residual methods
        for measure in set(i.integral_type() for i in form.integrals()):
René Heß's avatar
René Heß committed
            logger.info("generate_residual_kernels: measure {}".format(measure))
            with global_context(integral_type=measure):
                enum_pattern()
                pattern_baseclass()
                enum_alpha()

                from dune.perftool.pdelab.signatures import assembler_routine_name
                with global_context(kernel=assembler_routine_name()):
                    kernel = [k for k in get_backend(interface="generate_kernels_per_integral")(form.integrals_by_type(measure))]
                if get_form_option("numerical_jacobian"):
                    # Include headers for numerical methods
                    include_file("dune/pdelab/localoperator/defaultimp.hh", filetag="operatorfile")

                    # Numerical jacobian base class
                    _, loptype = class_type_from_cache("operator")
                    from dune.perftool.pdelab.signatures import ufl_measure_to_pdelab_measure
                    which = ufl_measure_to_pdelab_measure(measure)
                    base_class("Dune::PDELab::NumericalJacobian{}<{}>".format(which, loptype), classtag="operator")

                    # Numerical jacobian initializer list
                    ini = name_initree_member()
                    ini_constructor = name_initree_constructor_param()
                    initializer_list("Dune::PDELab::NumericalJacobian{}<{}>".format(which, loptype),
                                     ["{}.get<double>(\"numerical_epsilon.{}\", 1e-9)".format(ini_constructor, ini, which.lower())],
                                     classtag="operator",
                                     )
                    # In the case of matrix free operator evaluation we need jacobian apply methods
                    if get_form_option("matrix_free"):
                        from dune.perftool.pdelab.driver import is_linear
                        if is_linear(original_form):
                            # Numeical jacobian apply base class
                            base_class("Dune::PDELab::NumericalJacobianApply{}<{}>".format(which, loptype), classtag="operator")

                            # Numerical jacobian apply initializer list
                            initializer_list("Dune::PDELab::NumericalJacobianApply{}<{}>".format(which, loptype),
                                             ["{}.get<double>(\"numerical_epsilon.{}\", 1e-9)".format(ini_constructor, ini, which.lower())],
                                             classtag="operator",
                                             )
                        else:
                            # Numerical nonlinear jacobian apply base class
                            base_class("Dune::PDELab::NumericalNonlinearJacobianApply{}<{}>".format(which, loptype), classtag="operator")

                            # Numerical nonlinear jacobian apply initializer list
                            initializer_list("Dune::PDELab::NumericalNonlinearJacobianApply{}<{}>".format(which, loptype),
                                             ["{}.get<double>(\"numerical_epsilon.{}\", 1e-9)".format(ini_constructor, ini, which.lower())],
                                             classtag="operator",
René Heß's avatar
René Heß committed
            operator_kernels[(measure, 'residual')] =  kernel

        return operator_kernels
René Heß's avatar
René Heß committed
def generate_jacobian_kernels(form, original_form):
    logger = logging.getLogger(__name__)
René Heß's avatar
René Heß committed
    from ufl import derivative
    jacform = derivative(original_form, original_form.coefficients()[0])

    from dune.perftool.ufl.preprocess import preprocess_form
    jacform = preprocess_form(jacform).preprocessed_form

    operator_kernels = {}
    with global_context(form_type="jacobian"):
        if get_form_option("generate_jacobians"):
            for measure in set(i.integral_type() for i in jacform.integrals()):
René Heß's avatar
René Heß committed
                logger.info("generate_jacobian_kernels: measure {}".format(measure))
René Heß's avatar
René Heß committed
                with global_context(integral_type=measure):
                    from dune.perftool.pdelab.signatures import assembler_routine_name
                    with global_context(kernel=assembler_routine_name()):
                        kernel = [k for k in get_backend(interface="generate_kernels_per_integral")(jacform.integrals_by_type(measure))]
                operator_kernels[(measure, 'jacobian')] = kernel

            # Generate dummy functions for those kernels, that vanished in the differentiation process
            # We *could* solve this problem by using lambda_* terms but we do not really want that, so
            # we use empty jacobian assembly methods instead
            alpha_measures = set(i.integral_type() for i in form.integrals())
            jacobian_measures = set(i.integral_type() for i in jacform.integrals())
            for it in alpha_measures - jacobian_measures:
                with global_context(integral_type=it):
                    from dune.perftool.pdelab.signatures import assembly_routine_signature
                    operator_kernels[(it, 'jacobian')] = [LoopyKernelMethod(assembly_routine_signature(), kernel=None)]

    # Jacobian apply methods for matrix-free computations
    if get_form_option("matrix_free"):
        # The apply vector has reserved index 1 so we directly use Coefficient class from ufl
        from ufl import Coefficient
        apply_coefficient = Coefficient(form.coefficients()[0].ufl_element(), 1)

        # Create application of jacobian on vector
        from ufl import action
        jac_apply_form = action(jacform, apply_coefficient)

        # Create kernel for jacobian application
        with global_context(form_type="jacobian_apply"):
            for measure in set(i.integral_type() for i in jac_apply_form.integrals()):
                with global_context(integral_type=measure):
                    with global_context(kernel=assembler_routine_name()):
                        kernel = [k for k in get_backend(interface="generate_kernels_per_integral")(jac_apply_form.integrals_by_type(measure))]
                operator_kernels[(measure, 'jacobian_apply')] = kernel

                # Generate dummy functions for those kernels, that vanished in the differentiation process
                # We *could* solve this problem by using lambda_* terms but we do not really want that, so
                # we use empty jacobian assembly methods instead
                alpha_measures = set(i.integral_type() for i in form.integrals())
René Heß's avatar
René Heß committed
                jacobian_apply_measures = set(i.integral_type() for i in jac_apply_form.integrals())
                for it in alpha_measures - jacobian_apply_measures:
                    with global_context(integral_type=it):
                        from dune.perftool.pdelab.signatures import assembly_routine_signature
René Heß's avatar
René Heß committed
                        operator_kernels[(it, 'jacobian_apply')] = [LoopyKernelMethod(assembly_routine_signature(), kernel=None)]

    return operator_kernels


René Heß's avatar
René Heß committed
def generate_control_kernels(forms):
    pass


René Heß's avatar
René Heß committed
def generate_localoperator_kernels(operator):
    logger = logging.getLogger(__name__)

    data = get_global_context_value("data")
    original_form = data.object_by_name[get_form_option("form")]
    from dune.perftool.ufl.preprocess import preprocess_form

    if get_form_option("adjoint"):
        # Generate adjoint operator
        #
        # The jacobian of the adjoint form is just the jacobian of the
        # original form with test and ansazt function swapped. A a
        # linear form you have to subtract the derivative of the
        # objective function w.r.t the ansatz function to get the
        # final residual formulation of the adjoint.
        #
René Heß's avatar
René Heß committed
        # Might not be true in all cases but works for the simple ones.
René Heß's avatar
René Heß committed
        assert get_form_option("objective_function") is not None
        assert get_form_option("control") is False

        from ufl import derivative, adjoint, action, replace
        from ufl.classes import Coefficient

        # Jacobian of the adjoint form
        jacform = derivative(original_form, original_form.coefficients()[0])
        adjoint_jacform = adjoint(jacform)

        # Derivative of objective function w.r.t. state
        objective = data.object_by_name[get_form_option("objective_function")]
        objective_jacobian = derivative(objective, objective.coefficients()[0])

        # Replace coefficient belonging to ansatz function with new coefficient
        element = objective.coefficients()[0].ufl_element()
        coeff = Coefficient(element, count=3)
        objective_jacobian = replace(objective_jacobian, {objective.coefficients()[0]: coeff})
        if len(adjoint_jacform.coefficients()) > 0:
            adjoint_jacform = replace(adjoint_jacform, {adjoint_jacform.coefficients()[0]: coeff})

        # Residual of the adjoint form
        adjoint_form = action(adjoint_jacform, original_form.coefficients()[0])
        adjoint_form = adjoint_form + objective_jacobian

        # Update form and original_form
        original_form = adjoint_form
        form = preprocess_form(adjoint_form).preprocessed_form

    elif get_form_option("control"):
        # Generate control operator
        #
        # This is the normal form derived w.r.t. the control
        # variable.
        assert get_form_option("control_variable") is not None
        controls = [data.object_by_name[ctrl.strip()] for ctrl in get_form_option("control_variable").split(",")]
        assert len(controls) == 1

        # We need to transform numpy ints to python native ints
        def _unravel(flat_index, shape):
            multi_index = np.unravel_index(flat_index, shape)
            multi_index = tuple(int(i) for i in multi_index)
            return multi_index

        forms = []
René Heß's avatar
René Heß committed
        element = original_form.coefficients()[0].ufl_element()
        coeff = Coefficient(element, count=3)
René Heß's avatar
René Heß committed
        for control in controls:
            shape = control.ufl_shape
            flat_length = np.prod(shape)
            for i in range(flat_length):
                c = control[_unravel(i, shape)]
                control_form = diff(original_form, control)
René Heß's avatar
René Heß committed
                control_form = action(control_form, coeff)
                objective = data.object_by_name[get_form_option("objective_function")]
                objective_gradient = diff(objective, control)
                control_form = control_form + objective_gradient
René Heß's avatar
René Heß committed
                forms.append(preprocess_form(control_form).preprocessed_form)

        # Used to create local operator default settings
        form = preprocess_form(original_form).preprocessed_form

        # control = data.object_by_name[get_form_option("control_variable")]
        # assert control.ufl_shape is ()

        # from ufl import diff, replace
        # from ufl.classes import Coefficient
        # control_form = diff(original_form, control)
        # # element = control_form.coefficients()[0].ufl_element()
        # # coeff = Coefficient(element, count=3)
        # # control_form = replace(control_form, {control_form.coefficients()[0]: coeff})
        # original_form = control_form
        # form = preprocess_form(control_form).preprocessed_form

    else:
        form = preprocess_form(original_form).preprocessed_form


    # Reset the generation cache
    from dune.perftool.generation import delete_cache_items
    delete_cache_items()

    # Have a data structure collect the generated kernels
    operator_kernels = {}

    # Generate things needed for all local operator files
    local_operator_default_settings(operator, form)

    if get_form_option("control"):
        logger.info("generate_localoperator_kernels: create methods for control operator")
        operator_kernels.update(generate_control_kernels(forms))
    else:
        logger.info("generate_localoperator_kernels: create residual methods")
        operator_kernels.update(generate_residual_kernels(form))

        # Generate the necessary jacobian methods
        if not get_form_option("numerical_jacobian"):
            logger.info("generate_localoperator_kernels: create jacobian methods")
            operator_kernels.update(generate_jacobian_kernels(form, original_form))