Newer
Older
from dune.perftool.generation import (backend,
base_class,
class_basename,
class_member,
constructor_parameter,
get_global_context_value,
include_file,
initializer_list,
retrieve_cache_functions,
template_parameter,
)
from dune.perftool.cgen.clazz import (AccessModifier,
BaseClass,
ClassMember,
)
from dune.perftool.ufl.modified_terminals import Restriction
from pymbolic.primitives import Variable
from pytools import Record
Dominic Kempf
committed
import cgen
name = data.object_names[id(formdata.original_form)]
return name
for index, form in enumerate(data.forms):
if formdata.preprocessed_form.equals(form):
name = str(index)
return name
# If the form has no name and can not be found in data.forms something went wrong
assert False
def name_localoperator_file(formdata, data):
if len(data.forms) == 1:
filename = get_option("operator_file")
else:
suffix = '_' + name_form(formdata, data)
basename, extension = splitext(get_option("operator_file"))
filename = basename + suffix + extension
def lop_template_ansatz_gfs():
return "GFSU"
def lop_template_test_gfs():
return "GFSV"
def lop_template_range_field():
return "RF"
def lop_domain_field(name):
# TODO: Rethink for not Galerkin Method
gfs = lop_template_ansatz_gfs()
return "using {} = typename {}::Traits::GridView::ctype;".format(name, gfs)
def name_domain_field():
name = "DF"
lop_domain_field(name)
return name
def lop_template_gfs(ma):
from ufl.classes import Argument, Coefficient
if isinstance(ma.argexpr, Argument):
if ma.argexpr.number() == 0:
return lop_template_test_gfs()
if ma.argexpr.number() == 1:
return lop_template_ansatz_gfs()
if isinstance(ma.argexpr, Coefficient):
# Index 0 is reserved for trialfunction, index 1 is reserved for jacobian apply function
assert ma.argexpr.count() < 2
return lop_template_ansatz_gfs()
assert False
def name_initree_constructor_param():
return "iniParams"
param_name = name_initree_constructor_param()
include_file('dune/common/parametertree.hh', filetag="operatorfile")
constructor_parameter("const Dune::ParameterTree&", param_name, classtag="operator")
initializer_list(name, [param_name], classtag="operator")
return "const Dune::ParameterTree& {};".format(name)
return "enum {{ doPattern{} = true }};".format(which)
def enum_pattern():
from dune.perftool.generation import get_global_context_value
integral_type = get_global_context_value("integral_type")
from dune.perftool.pdelab.signatures import ufl_measure_to_pdelab_measure
return _enum_pattern(ufl_measure_to_pdelab_measure(integral_type))
def _pattern_baseclass(measure):
return base_class('Dune::PDELab::Full{}Pattern'.format(measure), classtag="operator")
def pattern_baseclass():
from dune.perftool.generation import get_global_context_value
integral_type = get_global_context_value("integral_type")
from dune.perftool.pdelab.signatures import ufl_measure_to_pdelab_measure
return _pattern_baseclass(ufl_measure_to_pdelab_measure(integral_type))
return "enum {{ doAlpha{} = true }};".format(which)
def enum_alpha():
from dune.perftool.generation import get_global_context_value
integral_type = get_global_context_value("integral_type")
from dune.perftool.pdelab.signatures import ufl_measure_to_pdelab_measure
return _enum_alpha(ufl_measure_to_pdelab_measure(integral_type))
def localoperator_basename(formdata, data):
form_name = name_form(formdata, data)
return "LocalOperator" + form_name.capitalize()
def class_type_from_cache(classtag):
from dune.perftool.generation import retrieve_cache_items
# get the basename
basename = [i for i in retrieve_cache_items(condition="{} and basename".format(classtag))]
assert len(basename) == 1
basename = basename[0]
# get the template parameters
tparams = [i for i in retrieve_cache_items(condition="{} and template_param".format(classtag))]
tparam_str = ''
if len(tparams) > 0:
tparam_str = '<{}>'.format(', '.join(t for t in tparams))
return basename, basename + tparam_str
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
class AccumulationSpace(Record):
def __init__(self,
lfs=None,
index=None,
restriction=None,
element=None,
):
Record.__init__(self,
lfs=lfs,
index=index,
restriction=restriction,
element=element,
)
def get_args(self):
if self.lfs is None:
return ()
else:
return (self.lfs, self.index)
def get_restriction(self):
if self.restriction is None:
return ()
else:
return (self.restriction,)
def determine_accumulation_space(expr, number, measure):
from dune.perftool.ufl.modified_terminals import extract_modified_arguments
args = extract_modified_arguments(expr, argnumber=number)
if measure == 'exterior_facet':
for ma in args:
ma.restriction = Restriction.NEGATIVE
# If this is a residual term we return a dummy object
if len(args) == 0:
return AccumulationSpace()
# Extract information on the finite element
from ufl.functionview import select_subelement
subel = select_subelement(ma.argexpr.ufl_element(), ma.component)
# And generate a local function space for it!
from dune.perftool.pdelab.spaces import name_lfs, name_lfs_bound, lfs_child, lfs_iname
lfs = name_lfs(ma.argexpr.ufl_element(), ma.restriction, ma.component)
from dune.perftool.generation import valuearg
from loopy.types import NumpyType
valuearg(lfs, dtype=NumpyType("str"))
if len(subel.value_shape()) != 0:
from dune.perftool.pdelab.geometry import dimension_iname
idims = tuple(dimension_iname(context='arg', count=i) for i in range(len(subel.value_shape())))
lfs = lfs_child(lfs, idims, shape=subel.value_shape(), symmetry=subel.symmetry())
subel = subel.sub_elements()[0]
lfsi = Variable(lfs_iname(subel, ma.restriction, count=number))
# If the LFS is not yet a pymbolic expression, make it one
from pymbolic.primitives import Expression
if not isinstance(lfs, Expression):
lfs = Variable(lfs)
return AccumulationSpace(lfs=lfs,
index=lfsi,
restriction=ma.restriction,
)
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def boundary_predicates(expr, measure, subdomain_id):
predicates = frozenset([])
if subdomain_id not in ['everywhere', 'otherwise']:
# We need to reconstruct the subdomain_data parameter of the measure
# I am *totally* confused as to why this information is not at hand anyway,
# but conversation with Martin pointed me to dolfin.fem.assembly where this
# is done in preprocessing with the limitation of only one possible type of
# modified measure per integral type.
# Get the original form and inspect the present measures
from dune.perftool.generation import get_global_context_value
original_form = get_global_context_value("formdata").original_form
sd = original_form.subdomain_data()
assert len(sd) == 1
subdomains, = list(sd.values())
domain, = list(sd.keys())
for k in list(subdomains.keys()):
if subdomains[k] is None:
del subdomains[k]
# Finally extract the original subdomain_data (which needs to be present!)
assert measure in subdomains
subdomain_data = subdomains[measure]
# Determine the name of the parameter function
name = get_global_context_value("data").object_names[id(subdomain_data)]
# Trigger the generation of code for this thing in the parameter class
from ufl.checks import is_cellwise_constant
cellwise_constant = is_cellwise_constant(expr)
from dune.perftool.pdelab.parameter import intersection_parameter_function
intersection_parameter_function(name, subdomain_data, cellwise_constant, t='int32')
predicates = predicates.union(['{} == {}'.format(name, subdomain_id)])
return predicates
from dune.perftool.pdelab.index import name_index
return name
@backend(interface="accum_insn")
def generate_accumulation_instruction(visitor, accterm, measure, subdomain_id):
# First we do the tree traversal to get a pymbolic expression representing this expression
pymbolic_expr = visitor(accterm.term)
# If this is a gradient, we generate an iname
additional_inames = frozenset({})
if accterm.argument.index:
from ufl.domain import find_geometric_dimension
dim = find_geometric_dimension(accterm.argument.expr)
for i in accterm.argument.index._indices:
if i not in visitor.dimension_indices:
additional_inames = additional_inames.union(frozenset({grad_iname(i, dim)}))
# It may happen that an entire accumulation term vanishes. We do nothing in that case
if pymbolic_expr == 0:
return
# We also traverse the test function to get its pymbolic equivalent
test_expr = visitor(accterm.argument.expr)
# Combine expression and test function
from pymbolic.primitives import Product
pymbolic_expr = Product((pymbolic_expr, test_expr))
# Collect the lfs and lfs indices for the accumulate call
test_lfs = determine_accumulation_space(accterm.argument.expr, 0, measure)
# In the jacobian case, also determine the space for the ansatz space
ansatz_lfs = determine_accumulation_space(accterm.term, 1, measure)
from dune.perftool.pdelab.argument import name_accumulation_variable
accumvar = name_accumulation_variable((ansatz_lfs.get_restriction() + test_lfs.get_restriction()))
predicates = boundary_predicates(accterm.term, measure, subdomain_id)
rank = 1 if ansatz_lfs.lfs is None else 2
from dune.perftool.pdelab.argument import PDELabAccumulationFunction
from pymbolic.primitives import Call
expr = Call(PDELabAccumulationFunction(accumvar, rank),
(ansatz_lfs.get_args() + test_lfs.get_args() + (pymbolic_expr,))
)
Dominic Kempf
committed
from dune.perftool.generation import instruction
from dune.perftool.options import option_switch
Dominic Kempf
committed
quad_inames = visitor.interface.quadrature_inames()
instruction(assignees=(),
expression=expr,
Dominic Kempf
committed
forced_iname_deps=additional_inames.union(frozenset(visitor.inames).union(frozenset(quad_inames))),
forced_iname_deps_is_final=True,
predicates=predicates
)
def visit_integrals(integrals):
for integral in integrals:
integrand = integral.integrand()
measure = integral.integral_type()
subdomain_id = integral.subdomain_id()
subdomain_data = integral.subdomain_data()
# Maybe make the jacobian inverse diagonal!
if get_option('diagonal_transformation_matrix'):
from dune.perftool.ufl.transformations.axiparallel import diagonal_jacobian
integrand = diagonal_jacobian(integrand)
# Gather dimension indices
from dune.perftool.ufl.dimensionindex import dimension_index_mapping
dimension_indices = dimension_index_mapping(integrand)
# Generate code for the LFS trees present in the form
from dune.perftool.ufl.modified_terminals import extract_modified_arguments
test_ma = extract_modified_arguments(integrand, argnumber=0)
trial_ma = extract_modified_arguments(integrand, coeffcount=0)
apply_ma = extract_modified_arguments(integrand, coeffcount=1)
import itertools
for ma in itertools.chain(test_ma, trial_ma, apply_ma):
if measure == 'exterior_facet':
ma.restriction = Restriction.NEGATIVE
from dune.perftool.pdelab.spaces import traverse_lfs_tree
traverse_lfs_tree(ma)
# Now split the given integrand into accumulation expressions
from dune.perftool.ufl.transformations.extract_accumulation_terms import split_into_accumulation_terms
accterms = split_into_accumulation_terms(integrand)
# Iterate over the terms and generate a kernel
for term in accterms:
# Adjust the index map for the visitor
from copy import deepcopy
indexmap = deepcopy(dimension_indices)
for i, j in term.indexmap.items():
if i in indexmap:
indexmap[j] = indexmap[i]
# Get a transformer instance for this kernel
Dominic Kempf
committed
if get_option('sumfact'):
from dune.perftool.sumfact import SumFactInterface
interface = SumFactInterface()
else:
from dune.perftool.pdelab import PDELabInterface
interface = PDELabInterface()
from dune.perftool.ufl.visitor import UFL2LoopyVisitor
visitor = UFL2LoopyVisitor(interface, measure, indexmap)
get_backend(interface="accum_insn")(visitor, term, measure, subdomain_id)
def generate_kernel(integrals):
# Visit all integrals once to collect information (dry-run)!
with global_context(dry_run=True):
visit_integrals(integrals)
# Now perform some checks on what should be done
from dune.perftool.sumfact.vectorization import decide_vectorization_strategy
decide_vectorization_strategy()
# Delete the cache contents and do the real thing!
from dune.perftool.generation import delete_cache_items
delete_cache_items("kernel_default")
visit_integrals(integrals)
knl = extract_kernel_from_cache("kernel_default")
delete_cache_items("kernel_default")
# Clean the cache from any data collected after the dry run
delete_cache_items("dryrundata")
Dominic Kempf
committed
@backend(interface="generate_kernels_per_integral")
def generate_kernels_per_integral(integrals):
yield generate_kernel(integrals)
def extract_kernel_from_cache(tag, wrap_in_cgen=True):
# Now extract regular loopy kernel components
from dune.perftool.loopy.target import DuneTarget
domains = [i for i in retrieve_cache_items("{} and domain".format(tag))]
if not domains:
domains = ["{[stupid] : 0<=stupid<1}"]
instructions = [i for i in retrieve_cache_items("{} and instruction".format(tag))]
temporaries = {i.name: i for i in retrieve_cache_items("{} and temporary".format(tag))}
arguments = [i for i in retrieve_cache_items("{} and argument".format(tag))]
silenced = [l for l in retrieve_cache_items("{} and silenced_warning".format(tag))]
transformations = [t for t in retrieve_cache_items("{} and transformation".format(tag))]
# Construct an options object
from loopy import Options
# Find a name for the kernel
if wrap_in_cgen:
from dune.perftool.pdelab.signatures import kernel_name
name = kernel_name()
else:
name = "constructor_kernel"
kernel = make_kernel(domains,
arguments,
temporary_variables=temporaries,
target=DuneTarget(),
options=opt,
silenced_warnings=silenced,
from loopy import make_reduction_inames_unique
kernel = make_reduction_inames_unique(kernel)
# Apply the transformations that were gathered during tree traversals
for trafo in transformations:
kernel = trafo[0](kernel, *trafo[1])
# Maybe apply vectorization strategies
Dominic Kempf
committed
if get_option("vectorize_quad"):
from dune.perftool.loopy.transformations.collect_rotate import collect_vector_data_rotate
kernel = collect_vector_data_rotate(kernel)
raise NotImplementedError("Only vectorizing sumfactorized code right now!")
# Now add the preambles to the kernel
preambles = [(i, p) for i, p in enumerate(retrieve_cache_items("{} and preamble".format(tag)))]
kernel = kernel.copy(preambles=preambles)
# Remove inames that have become obsolete
kernel = lp.remove_unused_inames(kernel)
# Do the loopy preprocessing!
kernel = preprocess_kernel(kernel)
# *REALLY* ignore boostability. This is - so far - necessary due to a mystery bug.
kernel = kernel.copy(instructions=[i.copy(boostable=False, boostable_into=frozenset()) for i in kernel.instructions])
from dune.perftool.loopy.transformations.matchfma import match_fused_multiply_add
kernel = match_fused_multiply_add(kernel)
Dominic Kempf
committed
if wrap_in_cgen:
# Wrap the kernel in something which can generate code
from dune.perftool.pdelab.signatures import assembly_routine_signature
Dominic Kempf
committed
signature = assembly_routine_signature()
kernel = LoopyKernelMethod(signature, kernel)
def name_time_dumper_os():
return "os"
def name_time_dumper_reset():
return "reset"
def name_time_dumper_t():
return "t"
def name_time_dumper_counter():
return "counter"
def name_time_dumper_exec():
return "exec"
@generator_factory(item_tags=("cached",), cache_key_generator=lambda **kw: None)
def name_example_kernel(name=None):
return name
class TimerMethod(ClassMember):
def __init__(self):
os = name_time_dumper_os()
reset = name_time_dumper_reset()
t = name_time_dumper_t()
ex = name_time_dumper_exec()
knl = name_example_kernel()
assert(knl is not None)
# TODO: operator counting only works if alpha_volume_kernel exists
"void dump_timers(Stream& {}, char* {}, bool {})".format(os, ex, reset),
"#ifdef ENABLE_COUNTER",
" auto counter = HP_TIMER_OPCOUNTERS({});".format(knl),
" counter.reset();",
"#endif",
""]
dump_timers = [i for i in retrieve_cache_items(condition='dump_timers')]
content.extend(map(lambda x: ' ' + x, dump_timers))
content.extend(["#ifdef ENABLE_COUNTERS",
" counter.reportOperations({});".format(os),
"#endif"])
content.append("}")
ClassMember.__init__(self, content)
class LoopyKernelMethod(ClassMember):
def __init__(self, signature, kernel, add_timings=True, initializer_list=[]):
from loopy import generate_body
from cgen import LiteralLines, Block
# Add initializer list if this is a constructor
if initializer_list:
content[-1] = content[-1] + " :"
for init in initializer_list[:-1]:
content.append(" " * 4 + init + ",")
content.append(" " * 4 + initializer_list[-1])
for i, p in kernel.preambles:
if add_timings and get_option('timer'):
from dune.perftool.pdelab.signatures import assembler_routine_name
timer_name = assembler_routine_name() + '_kernel'
name_example_kernel(name=timer_name)
post_include('HP_DECLARE_TIMER({});'.format(timer_name), filetag='operatorfile')
content.append(' ' + 'HP_TIMER_START({});'.format(timer_name))
dump_accumulate_timer(timer_name)
# Add kernel body
content.extend(l for l in generate_body(kernel).split('\n')[1:-1])
if add_timings and get_option('timer'):
content.append(' ' + 'HP_TIMER_STOP({});'.format(timer_name))
ClassMember.__init__(self, content)
from dune.perftool.generation import retrieve_cache_items
# Generate the name by concatenating basename and template parameters
basename, fullname = class_type_from_cache(tag)
base_classes = [bc for bc in retrieve_cache_items('{} and baseclass'.format(tag))]
constructor_params = [bc for bc in retrieve_cache_items('{} and constructor_param'.format(tag))]
il = [i for i in retrieve_cache_items('{} and initializer'.format(tag))]
pm = [m for m in retrieve_cache_items('{} and member'.format(tag))]
tparams = [i for i in retrieve_cache_items('{} and template_param'.format(tag))]
# Construct the constructor
Dominic Kempf
committed
constructor_knl = extract_kernel_from_cache(tag, wrap_in_cgen=False)
from dune.perftool.loopy.target import DuneTarget
constructor_knl = constructor_knl.copy(target=DuneTarget(declare_temporaries=False))
signature = "{}({})".format(basename, ", ".join(next(iter(p.generate(with_semicolon=False))) for p in constructor_params))
constructor = LoopyKernelMethod([signature], constructor_knl, add_timings=False, initializer_list=il)
# Take any temporary declarations from the kernel and make them class members
target = DuneTarget()
from loopy.codegen import CodeGenerationState
codegen_state = CodeGenerationState(kernel=constructor_knl,
implemented_data_info=None,
implemented_domain=None,
implemented_predicates=frozenset(),
seen_dtypes=frozenset(),
seen_functions=frozenset(),
seen_atomic_dtypes=frozenset(),
var_subst_map={},
allow_complex=False,
is_generating_device_code=True,
)
Dominic Kempf
committed
decls = [cgen.Line("\n " + next(iter(d.generate()))) for d in target.get_device_ast_builder().get_temporary_decls(codegen_state, 0)]
return Class(basename, base_classes=base_classes, members=[constructor] + members + pm + decls, tparam_decls=tparams)
def generate_localoperator_kernels(formdata, data):
# Extract the relevant attributes of the form data
form = formdata.preprocessed_form
from dune.perftool.generation import delete_cache_items
delete_cache_items()
# Manage includes and base classes that we always need
include_file('dune/pdelab/gridfunctionspace/gridfunctionspace.hh', filetag="operatorfile")
include_file('dune/pdelab/localoperator/idefault.hh', filetag="operatorfile")
include_file('dune/pdelab/localoperator/flags.hh', filetag="operatorfile")
include_file('dune/pdelab/localoperator/pattern.hh', filetag="operatorfile")
# Trigger this one once early on to assure that template
# parameters are set in the right order
lop_template_ansatz_gfs()
lop_template_test_gfs()
from dune.perftool.pdelab.parameter import parameterclass_basename
# Make sure there is always the same constructor arguments (even if parameter class is empty)
from dune.perftool.pdelab.localoperator import name_initree_member
name_initree_member()
from dune.perftool.pdelab.parameter import name_paramclass
name_paramclass()
# Add right base classes for stationary/instationary operators
base_class('Dune::PDELab::LocalOperatorDefaultFlags', classtag="operator")
from dune.perftool.pdelab.driver import is_stationary
if not is_stationary():
base_class('Dune::PDELab::InstationaryLocalOperatorDefaultMethods<{}>'
.format(rf), classtag="operator")
# Create set time method in parameter class
from dune.perftool.pdelab.parameter import define_set_time_method
define_set_time_method()
with global_context(form_type='residual'):
# Generate the necessary residual methods
for measure in set(i.integral_type() for i in form.integrals()):
with global_context(integral_type=measure):
enum_pattern()
pattern_baseclass()
enum_alpha()
from dune.perftool.pdelab.signatures import assembler_routine_name
with global_context(kernel=assembler_routine_name()):
Dominic Kempf
committed
kernel = [k for k in get_backend(interface="generate_kernels_per_integral")(form.integrals_by_type(measure))]
# Maybe add numerical differentiation
if get_option("numerical_jacobian"):
# Include headers for numerical methods
include_file("dune/pdelab/localoperator/defaultimp.hh", filetag="operatorfile")
# Numerical jacobian base class
_, loptype = class_type_from_cache("operator")
from dune.perftool.pdelab.signatures import ufl_measure_to_pdelab_measure
which = ufl_measure_to_pdelab_measure(measure)
base_class("Dune::PDELab::NumericalJacobian{}<{}>".format(which, loptype), classtag="operator")
# Numerical jacobian initializer list
ini = name_initree_member()
ini_constructor = name_initree_constructor_param()
initializer_list("Dune::PDELab::NumericalJacobian{}<{}>".format(which, loptype),
["{}.get<double>(\"numerical_epsilon.{}\", 1e-9)".format(ini_constructor, ini, which.lower())],
classtag="operator",
)
# In the case of matrix free operator evaluation we need jacobian apply methods
if get_option("matrix_free"):
from dune.perftool.pdelab.driver import is_linear
if is_linear(formdata.original_form):
# Numeical jacobian apply base class
base_class("Dune::PDELab::NumericalJacobianApply{}<{}>".format(which, loptype), classtag="operator")
# Numerical jacobian apply initializer list
initializer_list("Dune::PDELab::NumericalJacobianApply{}<{}>".format(which, loptype),
["{}.get<double>(\"numerical_epsilon.{}\", 1e-9)".format(ini_constructor, ini, which.lower())],
)
else:
# Numerical nonlinear jacobian apply base class
base_class("Dune::PDELab::NumericalNonlinearJacobianApply{}<{}>".format(which, loptype), classtag="operator")
# Numerical nonlinear jacobian apply initializer list
initializer_list("Dune::PDELab::NumericalNonlinearJacobianApply{}<{}>".format(which, loptype),
["{}.get<double>(\"numerical_epsilon.{}\", 1e-9)".format(ini_constructor, ini, which.lower())],
operator_kernels[(measure, 'residual')] = kernel
# Generate the necessary jacobian methods
if not get_option("numerical_jacobian"):
from ufl import derivative
jacform = derivative(formdata.original_form, formdata.original_form.coefficients()[0])
from dune.perftool.ufl.preprocess import preprocess_form
jacform = preprocess_form(jacform).preprocessed_form
with global_context(form_type="jacobian"):
for measure in set(i.integral_type() for i in jacform.integrals()):
with global_context(integral_type=measure):
with global_context(kernel=assembler_routine_name()):
Dominic Kempf
committed
kernel = [k for k in get_backend(interface="generate_kernels_per_integral")(jacform.integrals_by_type(measure))]
operator_kernels[(measure, 'jacobian')] = kernel
# Generate dummy functions for those kernels, that vanished in the differentiation process
# We *could* solve this problem by using lambda_* terms but we do not really want that, so
# we use empty jacobian assembly methods instead
alpha_measures = set(i.integral_type() for i in form.integrals())
jacobian_measures = set(i.integral_type() for i in jacform.integrals())
for it in alpha_measures - jacobian_measures:
with global_context(integral_type=it):
from dune.perftool.pdelab.signatures import assembly_routine_signature
operator_kernels[(it, 'jacobian')] = [LoopyKernelMethod(assembly_routine_signature(), kernel=None)]
# Jacobian apply methods for matrix-free computations
if get_option("matrix_free"):
# The apply vector has reserved index 1 so we directly use Coefficient class from ufl
from ufl import Coefficient
apply_coefficient = Coefficient(form.coefficients()[0].ufl_element(), 1)
# Create application of jacobian on vector
jac_apply_form = action(jacform, apply_coefficient)
# Create kernel for jacobian application
with global_context(form_type="jacobian_apply"):
for measure in set(i.integral_type() for i in jac_apply_form.integrals()):
with global_context(integral_type=measure):
with global_context(kernel=assembler_routine_name()):
Dominic Kempf
committed
kernel = [k for k in get_backend(interface="generate_kernels_per_integral")(jac_apply_form.integrals_by_type(measure))]
operator_kernels[(measure, 'jacobian_apply')] = kernel
# Generate dummy functions for those kernels, that vanished in the differentiation process
# We *could* solve this problem by using lambda_* terms but we do not really want that, so
# we use empty jacobian assembly methods instead
alpha_measures = set(i.integral_type() for i in form.integrals())
jacobian_apply_measures = set(i.integral_type() for i in jac_apply_form.integrals())
for it in alpha_measures - jacobian_apply_measures:
with global_context(integral_type=it):
from dune.perftool.pdelab.signatures import assembly_routine_signature
operator_kernels[(it, 'jacobian_apply')] = [LoopyKernelMethod(assembly_routine_signature(), kernel=None)]
# Return the set of generated kernels
return operator_kernels
def generate_localoperator_file(formdata, kernels, filename):
Dominic Kempf
committed
for k in kernels.values():
operator_methods.extend(k)
if get_option('timer'):
include_file('dune/perftool/common/timer.hh', filetag='operatorfile')
operator_methods.append(TimerMethod())
# Write the file!
from dune.perftool.file import generate_file
param = cgen_class_from_cache("parameterclass")
# TODO take the name of this thing from the UFL file
lop = cgen_class_from_cache("operator", members=operator_methods)
def generate_localoperator_basefile(formdatas, data):
filename = get_option("operator_file")
for formdata in formdatas:
lop_filename = name_localoperator_file(formdata, data)
include_file(lop_filename, filetag="operatorbasefile")
from dune.perftool.file import generate_file
generate_file(filename, "operatorbasefile", [])